Figure 2 Output SINR versus SNR for different beamformers under different URs, where INR = 10dB and the results are obtained after 80000 STI frames. (a) UR=-20dB, (b) UR=-10dB, (c) UR=0dB, (d) UR=10dB, (e) UR=20dB.

and do not use the diagonal loading. For the subspace projection beamformer, the time-varying (on the STI scale) weight vector is computed as $\hat{P}_j a_0$, where $\hat{P}_j = I - U_{d,j} U_{d,j}^H$ is the perpendicular projection matrix for the interference subspace, and $U_{d,j}$ contains normalized eigenvectors corresponding to the two largest eigenvalues in the decomposition $R_{x,j} = U_j A U_j^H$ such that $U_j = [U_{d,j} | U_{s+n,j}]$. The Bayesian beamforming weight of [27] is $\sigma_s^2 (R_{x,j} + K \sigma_s^2 C_0)^{-1} a_0$. For the Bayesian methods in [25, 26], they can not address the uncertainties due to some