two popular cost functions have been studied. The first is the classical Euclidean distance, given by

\[\Theta_E(W, H) \equiv (\sum_{j=1}^{n} \|v_j - Wh_j\|_2^2)^{\frac{1}{2}} = \|V - WH\|, \]

(2)

Another measure usually used in practice is K-L divergence (Kullback-Leibler divergence)

\[\Theta_D(V||WH) \equiv \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{V_{ij} \log \frac{V_{ij}}{\sum_{l=1}^{r} W_{il} H_{lj}}}{\sum_{i=1}^{m} W_{ii} H_{ii}} - V_{ij} + [WH]_{ij} \right) \]

(3)

The above measure is known as the generalized Kullback-Leibler (KL) divergence. The NMF’s goal is to minimize the distance between matrix \(V \) and \(WH \). In this paper, we choose Euclidean distance as the objective function of the NMF. Use the following iteration formulas [16], to obtain the matrix \(W \) and \(H \) until the \(\Theta_E(W, H) \) value reaches a local minimum:

\[H_{aj} \leftarrow H_{aj} \frac{[W^T V]_{aj}}{[W^T WH]_{aj}}, W_{ia} \leftarrow W_{ia} \frac{[VH^T]_{ia}}{[WHHT]_{ia}}; \]

(4)

B. NMF-NMF-SQ Hashing Algorithm

Figure 1 shows the calculation process of a NMF-NMF-SQ hashing algorithm proposed in [20], described as follows:

1) Given an image, using the private key \(k_1 \) to pseudorandomly select sub-images \(A_i, (A_i \in R^{m \times m}, 1 \leq i \leq p) \).
2) Obtain the NMF of each sub-image:

\[A_i \approx W_i F_i^T, (W_i, F_i \in R^{m \times r_1}). \]

(5)

where \(r_1 (r_1 \ll m) \) is the rank. In this way, we get \(2p \) matrix in size \(m \times r_1 \).