Table 8 reports results in terms of Spearman rank, an indicator of monotonicity, for the LIVE image database. With this criterion, our metric outperforms the full reference PSNR metric for all impairments except Gaussian noise, and the RR metric in [4] for all the reported cases except the case of fast fading. The more complex RR metric in [15] is outperformed in the case of Gaussian blur.

Tables 4 and 5 report the results for the IVC image database in terms of norm of residuals and correlation coefficient, respectively. We observe that our metric outperforms the full reference metric PSNR and the reduced reference metric in [4] in all cases. Considering the Spearman rank, reported in Table \(\text{tab:SummaryImagesIVCSp}\), our metric outperforms both the full reference PSNR metric and the RR metric in [4] in all cases except for PSNR in the case of JPEG2000 compression. Note that with this database, the gain obtained with our metric with respect to the others is higher, probably due to the fact that the metric in [4] was tailored to the LIVE database. We reported for completeness the results in terms of correlation coefficient for the metric [13]. This metric has very high correlation with subjective results; it is however too complex when real time implementation is required.

The results obtained for the case of video sequences in the LIVE video database are summarised in Table 7 for the correlation coefficient and in Table ?? for the Spearman coefficient. We can observe that our metric outperforms the full reference PSNR metric in most cases.