algorithm by taking advantage of the data provided by our algorithm about the correspondences between the points in the two clouds.

Figure 7. Coarse Alignment Algorithm.

1. Points of interest in cloud 1 \(\{p_{1i}\} \) and cloud 2 \(\{p_{2i}\} \) are selected.
2. **while** all the target points \(\{p_{2i}\} \) have not been checked:
3. **while** all the starting points \(\{p_{1i}\} \) have not been checked:
4. for the \(n_e \) resolution levels of the camera images:
5. **Correspondence Search Algorithm** is applied to search in cloud 1 (starting with \(P_{1x} \)) for the correspondence of a point of interest \(P_{2y} \). The output data consist of the corresponding point \(P_{1x} \), the array of cells \(C_{1x} \), the rotation index around the normal, \(k_{tx} \), and the similarity measure, \(M_{Sc} \).
6. if \(M_{Sc} < \tau_{M_{Sc}}(l) \), Go to step 12; else \(\tau_{M_{Sc}}(l) = M_{Sc} \), end if.
7. if level \(l \) is the last one:
 (a) The Euclidean transformation \(T_c \) associated with the correspondence is calculated.
 (b) Two cells of \(C_{1x} \) that meet certain conditions of angle between normals and distance with respect to two other cells in cloud 2 are selected.
 (c) Two correspondences between those cells are established: \(m \leftrightarrow n, r \leftrightarrow s \).
 (d) Using the points \(P_{1x}, P_{1m}, P_{1r} \) from cloud 1 and the points \(P_{2y}, P_{2m}, P_{2s} \) from cloud 2, a fictitious correspondence \(t_1 \leftrightarrow t_2 \) is created and its associated Euclidean transformation is calculated: \(T_f \).
 (e) The distances \(d_R \) and \(d_t \) between the transformations \(T_c \) and \(T_f \) are calculated.
 (f) if \((d_R < \tau_R) \) and \((d_t < \tau_t) \), The algorithm is ended. end if
8. end if
9. \(P_{1x} = P_{1x} \) (the first iteration for the next resolution level starts with the point that was found in the previous resolution level).
10. The next resolution level is prepared: \(n_s = 2 \cdot n_s; n_e = n_e/2; k_{tx} = 2 \cdot k_{tx} \).
11. end for
12. \(P_{1x} = \) Next point of \(\{p_{1i}\} \) (if this point has not been evaluated yet)
13. end while
14. \(P_{2y} = \) Next point of \(\{p_{2i}\} \)
15. end while

Figure 8 Evaluation of the stopping criterion. The points \(p_h \) and \(p_l \) and their normal vectors are obtained from the correspondence \((p_{1a}, p_{2b}) \) found by the alignment algorithm and two additional correspondences \((p_{1m}, p_{2m}) \) and \((p_{1r}, p_{2s}) \). \(p_h \) and \(p_l \) are the centroids of the triangles.