2.2. Descriptor Construction

In order to obtain the descriptor associated with a particular point-of-interest in the cloud (let \(^w p_q \) be this point), it is necessary to express the cloud points in a local coordinate system centered on \(^w p_q \) and whose \(Z_q \)-axis is its normal vector. The \(X_q \)-axis is chosen so that it is perpendicular to both the \(Y_w \)-axis of the reference coordinate system and the normal vector at the point-of-interest. Thus the \(Y_q \)-axis is determined by the cross product of unit vectors along the \(X_q \) and \(Z_q \) axes. This criterion establishes a unique reference for the angles of rotation about the \(Z_q \)-axis (i.e. above normal \(\overline{n}_q \)), which will subsequently facilitate the calculation of the Euclidean transformation associated with that correspondence.

Figure 1. Construction of a CIRCON descriptor. Green shows cell division in sector i and red indicates the contour formed by the points of the cells with the greatest z coordinate.

![Diagram of CIRCON descriptor](image)

Once the cloud points are transformed to the local frame, the environment of the point-of-interest is considered to be divided into \(n_s \) sectors (whose angle is \(\rho_\theta \) radians), which are further divided radially into cells with length \(\rho_r \) mm (excluding the cell closest to the centre, “cell 0”, which will be a sector with a radius \(0.5 \cdot \rho_r \) mm). The sectors are numbered clockwise starting with the sector that is centred on the \(X_q \)-axis (\(\theta_i = 0 \)). Figure 1 shows, around the \(Z_q \)-axis, this sense of numbering and the nature of the cells for the i-th sector.

Taking into account this division of the point cloud into sectors and cells, a transformation based on cylindrical coordinates is applied in order to obtain, for any point \(p_d \) with coordinates \((x_d,y_d,z_d)\) in the coordinate system with origin at \(^w p_q \), the \(i \) index corresponding to the number of sector to which it belongs, the \(j \) index indicating the cell within that sector, and the height value associated with its coordinate \(z_d \).

\[
i = \left\lfloor \frac{\tan^{-1} \left(\frac{y_d}{x_d} \right)}{\rho_\theta} \right\rfloor \mod n_s + 1
\]

(1)