The use of this procedure yields us to calculate the spatial and spectral gray level dependence for both θ and $(\theta + \pi)$.

Finally, the matrix M_{V,V_Δ} is obtained by keeping only the rows of T with no repetitions, however, the number of repetitions for each row is represented in an array of occurrences called I_{occu}. At the end of the process, I_{occu} is normalized with respect to the size of M_{V,V_Δ}, so that each component represents the probability of occurrence of a given combination (V,V_Δ).

The spatial and spectral gray level dependence algorithm can be given as follows:

STEP 1: For a given distance d and angle θ, extract the two sub-tensors A and B from the tensor data X.

STEP 2: Compute the 3-mode flattening matrices A_3, B_3.

STEP 3: Build the matrix T.

STEP 4: Compute M_{V,V_Δ} by keeping only the rows T with no repetitions.

STEP 5: Compute I_{occu}.