Figure 2: 3D representation of the two vectors V and V_{Δ} for a given distance $d = 1$ and $\theta = 45^\circ$.

corresponds to V and V_{Δ} components. The use of this structure can help us to compute the occurrences while keeping the corresponding components vectors of V and V_{Δ}. For example if we take the first value of I_{occu} (i.e $I_{occu}(1)$), the corresponding components vectors of V and V_{Δ} are in the first row of $M_{V,V_{\Delta}}$ (see Fig.3), so $I_{occu}(1|d,\theta) = P(V^{(1)},V_{\Delta}^{(1)}|d,\theta)$ where $V^{(1)} = M_{V,V_{\Delta}}(1,1 : n)$ and $V_{\Delta}^{(1)} = M_{V,V_{\Delta}}(1,n + 1 : 2 \times n)$.

$(1 : n)$: designs columns 1 to n.

In order to compute the matrix $M_{V,V_{\Delta}}$, we define two sub-tensors A, B extracted from the tensor data X for each direction θ as shown in Fig.4. Using the 3-mode flattening matrix of A, B, we obtain respectively A_3, B_3. Let T denotes the matrix that horizontally concatenates A_3^t and B_3^t, and vertically concatenates B_3^t and A_3^t, where A_3^t, B_3^t denote the transposed matrices of A_3, B_3 respectively. T can be represented as follows:

$$ T = \begin{pmatrix} A_3^t & B_3^t \\ B_3^t & A_3^t \end{pmatrix} $$

(1)