Get minimum and maximum pixel values from the target image

\[\mathbf{v}_i = \nabla g_i \]

Copy the user-selected region in the source image to the target image

Evaluate the equation

\[f_{(t+1)} = f_{(t)} + xdt(\Delta f_i - \text{div} \mathbf{v}_i)_{(t)} \]

based on input parameters:

For each iteration

- update \(xdt \) as follows

```cpp
CImg< double veloc(g); double m, M, xdt=0;
for (int k=0; k<iterNumber; k++) {
    cimg_for(veloc, p)
    veloc(p) = \Delta f_i(p) - \text{div} \mathbf{v}_i(p)
    ...
    if (dt>0) {
        m=getMinimumValue(veloc);
        M=getMaximumValue(veloc);
        xdt=dt/max(abs(m),abs(M));
    } else xdt=-dt;
    ...
}
```

- cut pixel values of the processed image \(f_{(t+1)} \) by using minimum and maximum pixel values of the target image

Normalize pixel values of the result image to the 0-255 interval

Figure 7. Workflow diagram for our seamless image cloning method.