where se is the size of the SE, $x_{se}^{(q)}$ is the gray-level of the q-th pixel of I_T when the image is decomposed row by row and R and C correspond to the size of the image. Then, the data vector Z can be written as follows:

$$Z = [x_{3	imes3}, x_{5	imes5}, x_{7	imes7}]^T$$

(17)

For data vector Z, two proposed clustering techniques are then applied to obtain a label for each pattern belonging to each cluster of the partition of feature space, where only one cluster corresponds to MCs, which generally appear in a group of just a few patterns (pixels), and the remaining clusters correspond to normal (healthy) tissue.

The initial conditions and results for each proposed clustering technique are presented below.

5.2.2 Segmentation by k-means

The initial conditions for this approach are as follows:

- Cluster number: 2 to 4.
- Prototypes: initialized as random values.
- Distance measure: Euclidean distance function.

Fig. 3 shows segmented ROI images with different cluster values obtained after applying the proposed k-means algorithm to the data vector Z.

![Fig. 2](image-url)

(a) Original ROI images. (b) ROI images processed by the top-hat transform.