actor YCrCbtoRGB()
 int(size=10) Y, int(size=10) Cr, int(size=10) Ch ⇒
 int(size=8) R, int(size=8) G, int(size=8) B :

 int(size=13) rv = 292;
 int(size=13) gu = 101;
 int(size=13) gv = 149;
 int(size=13) bu = 520;
 int(size=11) t1 := 1023;

 action
 Y: [y], Cr: [cr], Ch: [cb] ⇒
 R: [r], G: [g], B: [b]
 var
 int(size=10) r, int(size=10) g, int(size=10) b, int(size=10) rt,
 int(size=10) gt, int(size=10) bt, int(size=11) yt, int(size=11) crt,
 int(size=11) cbt
 do
 // signed to unsigned representation
 yt := bitand(y, t1);
 crt := bitand(cr, t1);
 cbt := bitand(cbt, t1);
 // core algorithm
 rt := (((yt−64) << 8) + rv*(crt−512)) >> 10;
 gt := (((yt−64) << 8) − gu*(cbt−512) − gv*(crt−512)) >> 10;
 bt := (((yt−64) << 8) + bu*(cbt−512)) >> 10;
 // clip output r
 if (rt > 0) then
 if (rt < 255) then r := rt;
 else r := 255; end
 else r := 0; end
 // clip output g
 if (gt > 0) then
 if (gt < 255) then g := gt;
 else g := 255; end
 else g := 0; end
 // clip output b
 if (bt > 0) then
 if (bt < 255) then b := bt;
 else b := 255; end
 else b := 0; end
 end
end

Figure 3: CAL actor example–actor YCrCbtoRGB

graph of this transformation is given in figure 4. Twenty extra variables (zt1 to z20) are introduced to represent intermediate results of thirty-five operations.

The remainder of this section provides relations, graphs, and algorithms that define pipeline synthesis and optimization problem from a generic dataflow graph, with an example using the graph of figure 4.

4.2 Dataflow Graph Relations

4.2.1 Operator Precedence Relation on Dataflow Graph

Let N = {1, . . . , n} be a set of algorithm operators and M = {1, . . . , m} be a set of algorithm variables. The following matrices describe operator-variable and precedence relations.

1. The operators/input variables relation. The operators / input variables relation is described with the F(n, m) matrix:

 \[F = \begin{bmatrix}
 f_{1,1} & \cdots & f_{1,m} \\
 \vdots & \ddots & \vdots \\
 f_{n,1} & \cdots & f_{n,m}
 \end{bmatrix} \]