The signal-to-noise ratio (SNR) is a measure of the ratio of signal power to noise power, often expressed in decibels (dB). The optimum cutoff SNR (dB) for different values of ρ_{SR_k} is shown in the graph. For OPRA, the values are:

- $\rho_{SR_k} = 0$: Optimum cutoff SNR is approximately 5 dB.
- $\rho_{SR_k} = 0.1$: Optimum cutoff SNR is approximately 4.5 dB.
- $\rho_{SR_k} = 0.5$: Optimum cutoff SNR is approximately 4 dB.
- $\rho_{SR_k} = 0.9$: Optimum cutoff SNR is approximately 3.5 dB.
- $\rho_{SR_k} = 1$: Optimum cutoff SNR is approximately 3 dB.

For TIFR, the values are:

- $\rho_{SR_k} = 0$: Optimum cutoff SNR is approximately 4 dB.
- $\rho_{SR_k} = 0.1$: Optimum cutoff SNR is approximately 3.5 dB.
- $\rho_{SR_k} = 0.5$: Optimum cutoff SNR is approximately 3 dB.
- $\rho_{SR_k} = 0.9$: Optimum cutoff SNR is approximately 2.5 dB.
- $\rho_{SR_k} = 1$: Optimum cutoff SNR is approximately 2 dB.

The graph shows that as the correlation coefficient ρ_{SR_k} increases, the optimum cutoff SNR decreases, indicating a reduction in system performance.