than the time stamp of the ACK, scanning WAITLIST stops. Figure 2 depicts an example of this situation.

Retransmission-First Packet Transmission: LE can transmit a new packet or lost packet if the number of on-going packets is less than cwnd. As the number of on-going packets is the same as the number of packets in WAITLIST, if the number is less than cwnd, LE transmits packets. If RTXLIST is not empty, LE gives priority to RTXLIST and sends the packets first. New packets can be sent only when RTXLIST is empty and when the transmission condition is still valid. After the time stamp is updated and the dupCnt is set to zero, the packet is removed from RTXLIST and inserted at the end of WAITLIST.

Per RTT Congestion Window Reduction: LE has no discrete states between the loss recovery period and the normal period. To prevent LE from too frequently reducing cwnd, LE introduces the variable last_loss_time. When the first lost packet is detected, the lost time is recorded in this variable. Whenever a packet loss occurs, LE checks if the difference between the current time and the last_loss_time is greater than an RTT. If so, LE updates the last_loss_time with the current time and uses the congestion control routine. Otherwise, LE ignores the packet loss since LE treats multiple packet losses in an RTT as a single loss event, as does NewReno.