Finally, we need to mention that performing theoretical estimation of shadowed areas according to the procedure described above there could be the case when two or more shadows overlap as shown in Fig. 4, where different fillings denote doubly and triply overlapped shadowed areas. In this case RLASS in the area where shadows overlap could be different compared to RLASS in non-overlapping regions of these areas. In this case the propagation loss in regions where two or more shadows overlap needs to be computed using different pass loss exponents.

\[F_{R_i}(k\Delta f)(\Delta f) = \frac{p_k}{x_{k+1} - x_k}. \]

3.3 The small-scale propagation model

We parameterize small-scale propagation models using the histogram matching method. Depending on presence of LOS in the area i, process $\{R_i(n), n = 0, 1, \ldots \}$ has either Rician or Rayleigh distribution with mean $E[R_i] = L_i$. Setting the number of states of the Markov chain in each state of the mobility model to one ($H = 1$) and choosing Δf small enough we capture these distributions as