1: \(G = G_0 \), (the seeds form the complete graph \(G_0 \));
2: Refine the distances in \(G \) using the anchors in the seed using Cayley-Menger method introduced in [49];
3: Localize the nodes in \(G \) using the refined distances;
4: \(k = 4 \);
5: for \(k \leq n \) do
6: \(G^- = G \)
7: \(G = G \cup I(\{k\}, \{(k, i)\}), \forall i \in G^- \);
8: Refine the three distances to \(k \) in \(G \) using three of the previously localized nodes in \(G^- \) using
 Cayley-Menger method introduced in [49];
9: \(k = k + 1 \);
10: end for

Fig. 14. Sequential distance refinement and localization of a trilateration network.

Fig. 15. Triangulation network: (a) Bearing measurements between three sensors are shown to be inconsistent with the underlying geometric cycle constraints. (b) Estimated inter-sensor bearings should be consistent with the cycle constraints imposed by the geometry after the optimization process.