a proxy server is required to set α and β in accordance with required throughput and other referenced parameters. Then, it starts the window size delegation. In this section, we discuss how to set α and β.

1) α: Here, we consider a case where STA i becomes a client, STA j becomes a provider, respectively. We set optimal α in accordance with a required throughput of STA i θ^r_i and a ‘referenced’ throughput of the STA θ_i. As the first step just after the ‘start’ in Fig. 6, a proxy server measures θ_i before starting the window size delegation, and then the proxy server calculates appropriate α from θ_i and θ^r_i.

Let us show the relationship between throughput and window size without window size delegation. Ideally, in the steady state, the congestion window size of STA i $W_i(t)$ changes as the dashed line does in Fig. 7. In this case, the relationship is written as

$$\theta_i = \frac{\int_{T_D} W_i(t) dt}{T_D} = \frac{D_i}{T_D} \frac{W_i^d}{2} \cdot T_D + \frac{1}{2} \cdot \frac{W_i^d}{2} \cdot T_D$$

$$= \frac{D_i}{T_D} (\frac{3}{2} \cdot \frac{W_i^d}{2}),$$

(3)

where D_i is the size of packets sent to STA i, W_i^d is the congestion window size when triple-duplicate ACKs occur in the static state; T_D is a duration after triple-duplicate ACKs occur until the next triple-duplicate ACKs occur.

Fig. 5. Ideal change in congestion window size over time when $\alpha = 1.0$