sequence number, and hope count. A Global Position System (GPS) is also used to get updated mobility information on each road segments and intersections. The road-density information is accordingly updated when any node leaves road segment and enters in other road segment. As shown in Figure 9, there are 5 nodes including 1 friend, 3 friends-of-friends, and 1 non-friend, on the road segment between and at intersections I_1 and I_5. The neighbors nodes N_1 and N_2 receive the packet at intersections I_1, but only N_1 will rebroadcast it in the improved flooding mechanism. Before this re-broadcast, N_1 appends intersection I_1 to the route in header of the packet.

However, when N_3 receives the RD packet, it will not update the route because N_3 is located on the same road segment with N_1. Node N_3 is close to the intersection I_5 and it will not forward RD packet across intersection I_5 to node N_5. Node N_3 holds a packet until it reaches at intersection I_5 and now N_3 become a decision making node. At this point, N_3 get the global knowledge of real-time vehicular traffic using friendship mechanism by determining the number of nodes on next road segments. The following subsection describes the friendship mechanism in more details. The node N_3 select I_5I_4, I_4I_3, and I_3I_6 routes (solid arrows in Figure 9) because of the high density node and traffic flow rates. Each decision