routing table, it simply discarded. Upon receiving a new RD packet, instead of directly rebroadcasting this packet the node holds the packet for particular period of time inversely proportional to the distance between itself and the sending node. When this time expires, the node only re-broadcasted a RD packet, if it did not observe that this packet was already re-broadcasted by farther-away node located on the same street. Using this approach, the farther away nodes can re-broadcast the RD message first, thus we get the faster progress and less traffic overhead in the networks.

Figure 9 illustrates the route discovery process in urban scenario. A source node S creates and broadcasts a RD message to neighbor nodes N_1 and N_2, and these nodes forward message to their neighbor nodes and so on until RD packet reach at destination node D. Each node maintains a routing table which includes, source and destination IP addresses and locations, road segments ID, intersection ID, neighbor’s ID,