Step 1: Find *Best* model

Best model is defined as the model with the smallest AIC or RSS among fitted models, where appropriate.

Step 2: Identify *possibly convex* models

Possibly convex models are quadratic or cubic models with negative concavity somewhere over the time domain.

Step 3: If model is NOT *possibly convex*:

\[K = -b_1; \quad t_{lag} = 0; \]
GO TO Step 5

Step 4: If model is *possibly convex*

1. For each log-parasitaemia predicted by the *Best* model \(y_i \) (but excluding any measured zero parasitaemias), calculate slope \(S_i \) between this point and the preceding predicted value

2. Find the most negative slope, \(S_{max} \)

3. Calculate normalised slopes \(S_n = S / S_{max} \)

4. Find clearance rate constant using the chart below

![Flowchart]

Step 5: END

1. Fit linear regression to *Best* model predicted log-parasitaemias with \(S_n > 1/5 \)
2. Clearance rate = - slope of the linear fit
3. \(t_{lag} = \) time of the last measurements with \(S_n \) negative or <1/5