Table 1: Classification of papers according to regression models (Cox, cause-specific, or Fine and Gray and logistic) used to investigate risk factors of time-to-event outcomes.

<table>
<thead>
<tr>
<th>Outcome investigated</th>
<th>Regression model mentioned</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exactly known time-to-event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause death</td>
<td>Cox model</td>
<td>[13, 17, 36, 63-167]</td>
</tr>
<tr>
<td>Cause-specific model</td>
<td></td>
<td>[8, 13, 79, 186-174]</td>
</tr>
<tr>
<td>Fine and Gray model</td>
<td></td>
<td>[8, 14, 36, 69, 80, 152, 169, 171, 175, 176]</td>
</tr>
<tr>
<td>Logistic model</td>
<td></td>
<td>[177-180]</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>Cox model</td>
<td>[70, 72, 74, 77, 91, 93, 95-97, 115, 122, 124-129, 132, 135, 147, 151, 156, 164, 167, 181-185]</td>
</tr>
<tr>
<td>Cause-specific model</td>
<td></td>
<td>[186]</td>
</tr>
<tr>
<td>Fine and Gray model</td>
<td></td>
<td>[175]</td>
</tr>
<tr>
<td>Initiation of kidney replacement therapy or death due to kidney failure</td>
<td>Cox model</td>
<td>[64, 65, 68, 74, 76, 78, 81, 87-89, 91, 95-97, 102, 112, 114, 116, 118, 120, 130, 131, 140, 142, 143, 145, 152, 155, 161, 162, 188, 189, 200-232]</td>
</tr>
<tr>
<td>Cause-specific model</td>
<td></td>
<td>[8, 13, 69, 80, 136, 152, 169, 175, 176, 210]</td>
</tr>
<tr>
<td>Fine and Gray model</td>
<td></td>
<td>[8, 13, 79, 169, 172, 173, 228]</td>
</tr>
<tr>
<td>Logistic model</td>
<td></td>
<td>[233]</td>
</tr>
<tr>
<td>Interval-censored time-to-event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute or relative change in renal function higher than a specific value as compared to baseline value, based on</td>
<td>Cox model</td>
<td>[36, 163, 245-249]</td>
</tr>
<tr>
<td>- GFR</td>
<td></td>
<td>[36]</td>
</tr>
<tr>
<td>- creatinine clearance</td>
<td>Fine and Gray model</td>
<td>[36]</td>
</tr>
<tr>
<td>- proteinuria</td>
<td>Logistic model</td>
<td>[89, 169, 213, 250-257]</td>
</tr>
<tr>
<td>Transition to a specific stage of disease (based on CKD or proteinuria)</td>
<td>Cox model</td>
<td>[9, 92, 146, 235, 245, 258-261]</td>
</tr>
<tr>
<td></td>
<td>Logistic model</td>
<td>[262-265]</td>
</tr>
<tr>
<td>Doubling of creatinine (serum or clearance)</td>
<td>Cox model</td>
<td>[130, 131, 211, 266-269]</td>
</tr>
<tr>
<td></td>
<td>Logistic model</td>
<td>[270]</td>
</tr>
<tr>
<td>Composite of exact and interval-censored time-to-events</td>
<td>Cox model</td>
<td>[36, 63, 78, 83, 141, 148, 153, 190, 192, 194, 201, 209, 211, 238, 271-291]</td>
</tr>
<tr>
<td></td>
<td>Fine and Gray model</td>
<td>[36, 171, 292]</td>
</tr>
<tr>
<td></td>
<td>Cause-specific model</td>
<td>[168, 170, 171]</td>
</tr>
<tr>
<td></td>
<td>Logistic model</td>
<td>[179, 293]</td>
</tr>
</tbody>
</table>

Abbreviations: GFR, glomerular filtration rate; CKD, chronic kidney disease
Table 2: Classification of papers according to regression models (standard linear or linear mixed model, and generalized estimating equations) used to investigate repeated measurements of renal function.

<table>
<thead>
<tr>
<th>Outcome investigated</th>
<th>Regression model mentioned</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>All repeated measurements of renal function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeated measurements of</td>
<td>Linear mixed model</td>
<td>[17, 36, 37, 41, 55, 56, 236, 292, 294-307]</td>
</tr>
<tr>
<td>- GFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Creatinine clearance</td>
<td>Linear mixed model accounting for informative drop-out</td>
<td>[55-58, 107, 170, 297, 308, 309]</td>
</tr>
<tr>
<td>- Proteinuria</td>
<td>Linear GEE</td>
<td>[216, 291, 295, 310]</td>
</tr>
<tr>
<td></td>
<td>Linear GEE accounting for informative drop-out</td>
<td>[311]</td>
</tr>
<tr>
<td></td>
<td>Latent class growth analysis</td>
<td>[45]</td>
</tr>
<tr>
<td>Repeated measurements of</td>
<td>Linear mixed model</td>
<td>[9, 140, 260, 312-314]</td>
</tr>
<tr>
<td>- log GFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- log creatinine (serum or clearance)</td>
<td>Linear GEE</td>
<td>[38, 84]</td>
</tr>
<tr>
<td>- log proteinuria</td>
<td>Latent class growth analysis</td>
<td>[9]</td>
</tr>
<tr>
<td>Absolute GFR change between each visit and baseline</td>
<td>Linear mixed model</td>
<td>[299]</td>
</tr>
<tr>
<td>Relative GFR change each year</td>
<td>Linear GEE</td>
<td>[163]</td>
</tr>
<tr>
<td>A summary statistic for the change of renal function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual slope of</td>
<td>Linear model</td>
<td>[37, 69, 96, 97, 118, 204, 224, 240, 246, 251, 252, 254, 267, 273, 278, 315-331]</td>
</tr>
<tr>
<td>- GFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Creatinine (serum or clearance)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- UACR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute GFR change as compared to baseline</td>
<td>Linear model</td>
<td>[81, 245, 255, 262, 332-334]</td>
</tr>
<tr>
<td>Relative GFR change as compared to baseline</td>
<td>Linear model</td>
<td>[81]</td>
</tr>
<tr>
<td>Log of absolute proteinuria change as compared to baseline</td>
<td>Linear model</td>
<td>[245]</td>
</tr>
</tbody>
</table>

Abbreviations: GFR, glomerular filtration rate; GEE, generalized estimating equations; UACR, urine albumin-to-creatinine ratio

a Slope of a marker is a summary statistic derived from measurements of a patient

Papers that investigated outcomes that are not mentioned in Table 1 and 2: [18, 29, 335-350].

Kidney disease.

Kovesdy CP, Anderson JE, Kalantar

