If the full covariate history \(x_i = (x_{i1}, ..., x_{iT})^T \) of individual \(i \) is known, then the individual (expected) survival function is

\[
S_{it}(\beta) = \prod_{j=1}^{t}(1 - r_{ij}(\beta)).
\]

Then the theoretical population survival function for a population with covariate histories given in \(X = \{x_1, ..., x_n\} \) is

\[
S_t(\beta, X) = \frac{1}{n} \sum_{i=1}^{n} S_{it}(\beta)
\]

and \(S_t(\beta, X) \) gives the expected proportion of individuals alive at visit \(t, t = 1, 2, ... \). If the covariate histories in \(X = \{x_1, ..., x_n\} \) are changed to take the values in \(X^* = \{x_{1}^*, ..., x_{n}^*\} \), then the population survival curve \(S_t(\beta, X) \) will transform to \(S_t(\beta, X^*) \), and the ratio

\[
PAF_t = \frac{S_t(\beta, X^*) - S_t(\beta, X)}{1 - S_t(\beta, X)}
\]

the population attributable fraction, gives the (theoretical) proportion of deaths which could have been avoided with the manipulation by time \(t = 1, 2, \). Naturally, \(PAF_t \) can be estimated by

\[
\hat{PAF}_t = \frac{S_t(\hat{\beta}, X^*) - S_t(\hat{\beta}, X)}{1 - S_t(\hat{\beta}, X)}
\]

and the delta method can be used to construct limiting confidence intervals, \(t = 1, 2, ... \) [1, 2].

The maximum likelihood estimation of attributable fractions was first proposed by Greenland and Drescher [3] in conventional logistic regression framework. An extension to the dynamic logistic regression models was proposed by Oja et al. [2] and public health impact was demonstrated using data on the risk of middle ear infections [4].

Here, we are interested in the impact of adherence behaviour on the risk of death. The covariate vector \(x_i \) can then be divided into two subvectors \(x_{i1} \) and \(x_{i2} \) such that \(x_i = (x_{i1}^T, x_{i2}^T)^T \), and \(x_{i1} \) includes the adherence variables and \(x_{i2} \) the other covariates (confounders). (Figure 1). For the population attributable fraction, the manipulation, is then
In order to estimate the population attributable fraction due to non-optimal adherence, \(x_{i1} \) will be set to \(x_{i1}^* \) (meaning optimal adherence) while \(x_{i2} \) will be left unchanged. Note that, in our case, the full adherence history of patient \(i \) who dies is not known (up to visit \(T_i \)) so that \(S_t(\hat{\beta}, X) \) cannot be calculated directly. We therefore compare the estimated (Kaplan-Maier) population survival curve from the original data (excluding STI patients after STI randomisation and upweighting equivalent patients randomised to CT), and the curve \(S_t(\hat{\beta}, X^*) \) to find an estimate for \(PAF_t \), \(t = 1, 2, ... \). For confidence intervals, \(M = 200 \) bootstrap samples were generated from our 2960 patients with resulting estimates \(\hat{PAF}_{t,m} \), \(m = 1, ..., M \), \(t = 1, 2, ... \). The bootstrap estimates \(\hat{PAF}_{t,m} \) are then used to calculate 90% confidence intervals for \(PAF_t \), \(t = 1, 2, ... \). Note that, if the lower limit of the confidence interval is positive, then a one-sided level 0.05 test rejects the null hypothesis "the manipulation has no effect". We also prefer 90% confidence interval here as \(M \) should be much larger for an accurate estimation of 95% confidence interval.

Figure 1: Illustration of the dynamic model: The probability \(P(y_t = 1|y_1 = \ldots, y_{t-1} = 0) \) is modeled using history \(H_t \), that is, the values \(x_{1,1}, \ldots, x_{1,t-1} \) and \(x_{2,1}, \ldots, x_{2,t-1} \).
References

