First MRSA model; introduction of application of modelling to evaluate intervention effectiveness [16]

First VRE model [49]

First model accounting for the role of readmission and interaction between settings [68]

Use of strain type data for transmission rate inference [61]

First model concerning nosocomial transmission in LTCF primarily [81]

Use of genotype data for transmission rate inference [62]

Model accounts for interaction between hospital wards [43]

First MRSA model [34] and only Moraxella catarrhalis model [62]

Only CRE model [63]

First P. aeruginosa model [53]

First C. difficile model [58]

First application of bayesian methods for HCAI model calibration [58]

MRSA

C. difficile

P. aeruginosa & VRE

ARB

MRSA & VRE

Stochastic modelling approach and first individual-based model are published [92]

First model incorporating formal parameter fitting and parameter uncertainty is proposed [18]

First model validated by consultation of two distinct datasets [53]. Introduction of methods to distinguish the relative role of acquisition routes [53]; consultation of genotype data [53]

Model accounts for heterogeneity in HCW behaviour [28]

Use of genotype data for transmission rate inference [62]

First CA-MRSA model [34] and only Moraxella catarrhalis model [62]

First economic evaluation of HCAI interventions based on a dynamic transmission model [14,23]

Influenza

M. catarrhalis

MRSA

Use of strain type data for transmission rate inference

MRSA, R-GNR & VRE

SA & P. aeruginosa

Model accounts for interaction between hospital wards [43]

First MRSA model; introduction of application of modelling to evaluate intervention effectiveness [16]

First VRE model [49]

First P. aeruginosa model [53]

First CA-MRSA model [34] and only Moraxella catarrhalis model [62]

First economic evaluation of HCAI interventions based on a dynamic transmission model [14,23]