Data collected through a cross-sectional approach

Purpose: ‘causal’ inference

Outcome is rare

\[\text{POR} = \text{PR} = \text{CIR} = \text{IDR} \ldots \]

Purpose: study prevalence in subgroups

Outcome is frequent / common

\[\text{Uni- or bivariate analysis} \]

\[\text{‘Prevalence projection’ modeling} \]

Structuring assumptions are all met

At least one structuring assumption is unmet

\[\text{Stop!} \]

Time frame of an underlying followed population is identifiable (including \(t_0 \) and \(\Delta t \))

Exposure refers to \(t_0 \) and the potential time of follow up is common to all subjects \(\Rightarrow \) underlying cohort (fixed population) is identifiable

\[\text{Analysis as in a retrospective cohort study} \]

\[\text{Cases are incident in a fixed population} \]

\[\text{CI}_i \Rightarrow \text{CIR} \]

\[\text{Poisson or Cox PH or log-binomial models adequate} \]

Data refers to a dynamic population

Time frame of an underlying followed population is not identifiable

Exposure refers to \(t_0 < t_e < t_1 \) and/or exposure changes status along \(\Delta t \) and/or the potential time of follow up may be different across subjects

\[\text{Analysis as in a density sampling case-control study} \]

\[\text{Prevalent cases (given } T_i = T_I = T_0) \text{ are proportional to respective incident cases in stratum } i \]

\[\text{Non-prevalent cases are proportional to respective person-time quantities in stratum } i \]

\[\text{CPR (POR) } \Rightarrow \text{IDR} \]

\[\text{Logistic model adequate} \]