Algorithm 1 SRI Generator

Given: We define $\mathcal{B} = (A,T,C,G) = (\mathcal{B}_i)_{i=1}^4$ to be the sequence of canonical bases. Furthermore, let $\mathcal{O}_i^K = (\mathcal{O}_i^K)_{i=1}^K$ be the sequence of **oligomers** of length K, e.g., $\mathcal{O}_i^3 = (AAA, AAT, \ldots, CGG, GGG)$. (Notice that \mathcal{O}_i^3 has $4^3 = 64$ elements.) Similarly, let $\mathbb{F}_i^K = (\mathbb{F}_i^K)_{i=1}^4$ be the sequence of oligomer **frequencies** of length K, such that $\sum_{i=1}^4 \mathbb{F}_i^K = 1$ and $\mathbb{F}_i^K \in [0,1]$ $\forall i$. For each fixed i, the oligomer \mathcal{O}_i^K has one corresponding frequency value \mathbb{F}_i^K. These frequencies are computed from a sample input sequence using SRI Analyzer. Let $N \geq 1$ be the user-chosen oligomer length for which the frequency composition is being approximated. Finally, we assume the input sequence is composed purely of A, T, C, and G. For a modified version of this algorithm which handles impure samples, please see our source code.

Ensure: The output sequence(s) approximates the short-range inhomogeneity of the input sequence. In other words, the input and output sequence(s) will share a similar N-mer frequency composition. The output sequence(s) will be randomly constructed to satisfy this constraint.

1: $(\mathcal{O}_i^{N}, \mathbb{F}_i^{N}) = \text{ReadCompositionTable()}$ #Example for $N = 1 : ((A,T,C,G), (0.25, 0.40, 0.20, 0.15))$
 #Calculate the demarcation table for the random selection of the first oligomer.
2: sum $\leftarrow 0$
3: for $i = 1$ to 4^N do
4: sum \leftarrow sum $+$ \mathbb{F}_i^{N}
 #Let partialSum be an array such that partialSum$^{(i)} \in [0,1]$, for $1 \leq i \leq 4^N$.
5: partialSum$^{(i)} \leftarrow$ sum
6: end for
7: for each FASTA sequence, “seq” do
8: length $= \text{GetSequenceLength(seq)}$
9: if length $\geq N$ then
10: $R_1 \leftarrow \text{GenerateRandomNumber}(0,1)$ #Generate some random $R_1 \in [0,1]$.
11: for $i = 1$ to 4^N do
12: if $R_1 < \text{partialSum}^{(i)}$ then
13: randomSeq $\leftarrow \mathcal{O}_i^{N}$
14: Exit Loop.
15: end if
16: end for
17: for $i = 1$ to length $-$ N do
18: sum $\leftarrow 0$
19: #The next base is chosen randomly using the frequencies of the 4 possible overlapping N-mer sequence tails.
20: $R_2 \leftarrow \text{GenerateRandomNumber}(0,1)$
21: tail $\leftarrow \text{Suffix(seq,N) - 1}$ #Example: Suffix(“hotdog”, 3) = “dog”.
22: for $i = 1$ to 4 do
23: oligo $\leftarrow \text{Concatenate(tail, \mathcal{B}_i)}$ #Example: Concatenate(“hot”, “dog”) = “hotdog”.
24: $f \leftarrow \text{GetOligoFrequency(oligo)}$ #GetOligoFrequency(oligo) = \mathbb{F}_j^N for one j such that $\mathcal{O}_j^{N} = \text{oligo}$.
25: sum \leftarrow sum $+$ f
16: #Let demarcation be an array such that demarcation$^{(i)} \in [0,1]$, for $1 \leq i \leq 4$.
26: demarcation$^{(i)} \leftarrow$ sum
27: if $R_2 < \text{demarcation}^{(i)}$ then
28: randSeq $\leftarrow \text{Concatenate(randSeq, \mathcal{B}_i)}$
29: Exit Loop.
30: end if
31: end for
32: if $R_2 \geq$ sum then
33: randomBase $\leftarrow \text{PickRandomBase()}$ #Randomly choose a base from {A,T,C,G}.
34: randSeq $\leftarrow \text{Concatenate(randSeq, randomBase)}$
35: end if
36: end for
37: end for
38: \text{WriteOutputFile(randSeq)}