Additional file 1: Schematic and mathematical description of the pathway-level aggregation methods

Schematic of the three mean-based methods. Algorithmic steps in *Mean all*, *Mean top 50%*, and *Mean CORGs* are schematized.
Mathematical description of the mean-based methods

Given a gene expression data with \(n \) samples and a pathway whose \(m \) member genes are represented in the data, let an \(m \times n \) matrix \(X \) be a \(z \)-scaled gene expression profile of the pathway’s member genes. Then, each element \(x_{ij} \) is a \(z \)-scaled expression level of a member gene \(i \) in sample \(j \). Pathway-level aggregation methods seek to derive a pathway expression profile \(a \) which is a vector with \(n \) elements.

Mean all

Each element \(a_j \) is calculated as

\[
a_j = \frac{1}{m} \sum_{i=1}^{m} x_{ij}
\]

(1)

Mean top 50%

The member genes’ expression profile is subject to Student’s \(t \)-test. Then, the member genes are sorted by \(|t|\) in descending order, or equivalently, by \(p \)-value in ascending order. The top 50% of the member genes are selected, and their gene expression profile is averaged as in Equation (1).

Mean CORGs

The member genes’ expression profile is subject to Student’s \(t \)-test. Overall direction of the pathway’s expression change is found by the sign of the mean of all the member genes’ \(t \)-statistics (\(\tilde{t} \)). Then, the member genes are sorted by \(t \)-statistic according to the overall direction;

- Descending order if \(\tilde{t} > 0 \) (Most up-regulated genes are arranged to the top)
- Ascending order if \(\tilde{t} < 0 \) (Most down-regulated genes are arranged to the top)

In this way, a sorted list of member genes \(\{g_1, g_2, g_3, \ldots, g_m\} \) is obtained.

Let \(G_k \) be a set of CORGs containing top \(k \) member genes. Then each element \(a_j \) is given by;

\[
a_j = \frac{1}{\sqrt{k}} \sum_{i=1}^{k} x_{ij}
\]

(2)

where the sum is divided by square root of \(k \) to stabilize variance.

Let \(S(G_i) \) the pathway-level \(t \)-statistic obtained from \(a \). Finding CORG set amounts to identify optimal \(k \) member genes that maximize the pathway-level \(t \)-statistic.

The CORG set is iteratively expanded until the pathway-level \(t \)-statistic does not improve, at which point the final CORG set and its aggregated pathway expression profile \(a \) is returned, as shown in the pseudocode;

Initialize \(G_0 = \{\} \) and \(S(G_0) = 0 \)

FOR \(i = 1 \) to \(m \)

- Add the next ranked gene \(g_i \) to CORG set \(G_i \)
- Aggregate the member genes’ expression by Equation (2) to obtain \(a \)
- Perform \(t \)-test on \(a \) to obtain \(S(G_i) \)
- IF \(|S(G_i)| < |S(G_{i-1})| \)

 BREAK

END FOR
Schematic of the two projection-based methods. Algorithmic steps in PCA and PLS are schematized.
Mathematical description of the projection-based methods

PCA (Principal Component Analysis)
PCA expects a data matrix in which samples are arranged in rows and variables in columns. Thus the aforementioned $m \times n$ matrix X needs to be transposed to an $n \times m$ matrix so that samples are arranged in rows and genes in columns. To simplify notation, the transposed matrix X^T will be referred to simply as X from now on.

Method 1. PCA by singular value decomposition (SVD) of X
PCA can be performed by SVD of X, which yields the factorization

$$X = U \Sigma V^T$$

where

- U is an $n \times n$ orthogonal matrix
- Σ is an $n \times n$ diagonal matrix
- V is an $m \times n$ orthogonal matrix.

The matrix product $U \Sigma$ is called the scores, in which each column gives the location of n samples with each PC axis. The matrix V is called the loadings, in which each column gives the location of each PC axis relative to the original system of m axes. First column in the scores matrix is taken as the pathway expression profile vector p.

Method 2. PCA by eigenvalue decomposition of a covariance matrix of X
Alternatively, PCA can be performed by eigenvalue decomposition of a covariance matrix of X.
An $m \times m$ symmetric matrix C which is given by the following equation

$$C = \frac{1}{n-1}X^T X$$

is called the covariance matrix of X (if X is mean-centered) or correlation matrix of X (if X is mean-centered and divided by standard deviation; i.e., z-scaled).

Since C is a symmetric matrix, C is an orthogonal matrix and orthogonally diagonalizable. Thus, C has n linearly independent eigenvectors p such that

$$C p_i = d_i p_i, \quad i = 1, \ldots, m$$

where p_i is i-th eigenvector and d_i is corresponding eigenvalue.

In matrix form, Equation (5) can be written as

$$CP = PD$$

where $D = \text{diag}\{d_1, \ldots, d_m\}$

Since P is an orthogonal matrix, it holds that $P^T = P^{-1}$. Thus Equation (6) can be written as

$$C = PD P^T$$

where

- P is an $m \times m$ orthogonal matrix whose columns are eigenvectors of C
- D is an $m \times m$ diagonal matrix whose diagonal entries are eigenvalues of C.
Relationship between the two methods

It can be seen that the two aforementioned approaches yield the same results as shown below.

From Equation (3), $X^T X$ is given by

$$X^T X = (U \Sigma V^T)^T (U \Sigma V^T) = (V \Sigma U^T)(U \Sigma V^T) = (V \Sigma)(U^T U)(\Sigma V^T) = (V \Sigma)(I)(\Sigma V^T) = V \Sigma^2 V^T$$

From Equations (4) and (7), $X^T X$ is given by

$$X^T X = (n-1)C = (n-1)PDP^T$$

Thus, it follows that $V = P$ and $(n-1)D = \Sigma^2$.

How to perform PCA in R

For the z-scaled and transposed $n \times m$ matrix X, PCA can be performed by either `prcomp()` or `svd()`, yielding the same results. First column of the resultant scores matrix is taken as the pathway expression vector a.

Using `prcomp()`

```r
PCA <- prcomp(X, center=F, scale=F)
Scores <- PCA$x
PathwayExpressionVector <- Scores[,1]
```

Using `svd()`

```r
SVD <- svd(X)
U <- SVD$u
D <- diag(SVD$d)
Scores <- U %*% D
PathwayExpressionVector <- Scores[,1]
```

In the analysis shown in the paper, `moduleEigengenes()` function in WGCNA package was used, which use `svd()`. To correct the sign of the elements in the pathway expression vector a, the function was called with the `align` parameter as follows;

```r
dummyColors <- rep("grey", numberOfMemberGenes)
ME <- moduleEigengenes(X, align="along average", scale=F, color=dummyColors)
PathwayExpressionVector <- ME$eigengenes[[1]]
```

PLS (Partial Least Squares)

PLS seeks to find a regression model between T and U (the principal component scores of X and those of Y, respectively).

The matrix X is decomposed into a score matrix T and a loading matrix P, and an error term E. The matrix Y is decomposed into a score matrix U and a loading matrix Q, and an error term F. In two-class classification problems, the matrix Y is a dummy coded class vector. The goal of PLS is to minimize the norm of F while keeping the correlation between X and Y by the relation $U = BT$.
How to perform PLS in R

For the z-scaled and transposed \(n \times m \) matrix \(X \), and a dummy coded class vector \(Y \), PLS can be performed by pls package. First column of the resultant scores matrix is taken as the pathway expression vector \(a \). Sign correction can be done by using 0(control)/1(case) coding for an overall up-regulated pathway and 1(control)/0(case) coding for an overall down-regulated pathway.

```r
Data <- data.frame(Y, X)
PLS <- plsr(Y~X, ncomp=2, data=Data, validation="LOO") # ncomp value does not matter since we use only the first component
PathwayExpressionVector <- PLS$scores[,1]
```

Mathematical description of the ASSESS method

Since this algorithm is comparably complex, interested readers are advised to refer to the original article for a precise mathematical description of the algorithm (Edelman E, Porrello A, Guinney J, Balakumaran B, Bild A, Febbo PG, Mukherjee S: Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles. *Bioinformatics* 2006, 22:e108-e116)