The mathematical relationship between ρ_{diff} value calculated using genotype information and LD calculated from allelic information

Let a and b be random variables for alleles from loci A and B where $a \in \{-1, 1\}$ and $b \in \{-1, 1\}$ and the observed haplotype frequency is shown in Table 1.

Table 1: Two haplotype observed frequency

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_2</td>
<td>x_{21}</td>
<td>x_{22}</td>
</tr>
</tbody>
</table>

We denote allele frequency from loci A and B as in Table 2.

Table 2: Estimated allele frequency

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>B_1</th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>p_2</td>
<td>q_1</td>
<td>q_2</td>
<td></td>
</tr>
</tbody>
</table>

Given that the loci A and B are independent, expected haplotype frequency is determined by

\[
\begin{align*}
x_{11} &= p_1q_1 \\
x_{12} &= p_1q_2 \\
x_{21} &= p_2q_1 \\
x_{22} &= p_2q_2
\end{align*}
\]

Linkage disequilibrium (LD) is defined as the deviation of the expected haplotype frequency and the definition of LD is given in Table 3.

Table 3: Two observed haplotype frequency

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>(x_{11} = p_1q_1 + D)</td>
<td>(x_{21} = p_2q_1 - D)</td>
</tr>
<tr>
<td>B_2</td>
<td>(x_{12} = p_1q_2 - D)</td>
<td>(x_{22} = p_2q_2 + D)</td>
</tr>
</tbody>
</table>

Let us compute the covariance of haplotype from two locus. The covariance is defined by

\[Cov(a, b) = E[ab] - E[a]E[b] \]

From Table 1, $E[ab]$ calculation is shown in the following equation:

\[
E[ab] = -1 \times -1 \times x_{11} + -1 \times 1 \times x_{21} + 1 \times -1 \times x_{12} + 1 \times 1 \times x_{22}
\]

\[
= x_{11} - x_{21} - x_{12} + x_{22}
\]

and $E[a]E[b]$ is given by

\[
E[a]E[b] = (-1 \times p_1 + 1 \times p_2)(-1 \times q_1 + 1 \times q_2)
\]

\[
= p_1q_1 - p_1q_2 - p_2q_1 + p_2q_2
\]

It follows that the haplotype covariance is

\[
E[ab] - E[a]E[b] = x_{11} - x_{21} - x_{12} + x_{22} - (p_1q_1 - p_1q_2 - p_2q_1 + p_2q_2)
\]

\[
= (x_{11} - p_1q_1) - (x_{21} - p_2q_1) - (x_{12} - p_1q_2) + (x_{22} - p_2q_2)
\]

From the relationship between observed haplotype frequency and LD in Table 3, we have

\[
E[ab] - E[a]E[b] = (x_{11} - p_1q_1) - (x_{21} - p_2q_1) - (x_{12} - p_1q_2) + (x_{22} - p_2q_2)
\]

\[
= D - (-D) - (-D) + D
\]

\[
= 4D
\]

which is the relationship between covariance and LD.

Next, we consider genotype correlation. Let S_1 and S_2 be random variables of SNP1 and SNP2 respectively with the values of $S_1 \in \{-1, 0, 1\}$ and $S_2 \in \{-1, 0, 1\}$. The observed genotype frequency is given Table 4.
Table 4: Genotype observed frequency

<table>
<thead>
<tr>
<th></th>
<th>A_1A_1</th>
<th>A_1A_2</th>
<th>A_2A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1B_1</td>
<td>f_{21}</td>
<td>f_{22}</td>
<td>f_{23}</td>
</tr>
<tr>
<td>B_2B_2</td>
<td>f_{31}</td>
<td>f_{32}</td>
<td>f_{33}</td>
</tr>
</tbody>
</table>

If two genotype locus are independent, the expected frequencies are given in Table 5.

Table 5: Genotype expected frequency

<table>
<thead>
<tr>
<th></th>
<th>A_1A_1</th>
<th>A_1A_2</th>
<th>A_2A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1B_1</td>
<td>$p_1^2q_1^2$</td>
<td>$2p_1p_2q_1^2$</td>
<td>$p_2^2q_2^2$</td>
</tr>
<tr>
<td>B_1B_2</td>
<td>$2p_1^2p_1q_1$</td>
<td>$4p_1p_2q_1q_2$</td>
<td>$2p_2^2q_1q_2$</td>
</tr>
<tr>
<td>B_2B_2</td>
<td>$p_1^2q_2^2$</td>
<td>$2p_1p_2q_2^2$</td>
<td>$p_2^2q_2^2$</td>
</tr>
</tbody>
</table>

Since $S_1, S_2 \in \{-1, 0, 1\}$, the covariance of two SNPs is computed by

$$E[S_1S_2] = -1 \times -1 \times f_{11} + -1 \times 1 \times f_{13} + 1 \times -1 \times f_{31} + 1 \times 1 \times f_{33}$$

$$= f_{11} - f_{13} - f_{31} + f_{33}$$

and

$$E[S_1]E[S_2] = (-1 \times p_1^2 + 1 \times q_1^2)(-1 \times q_1^2 + 1 \times q_2^2)$$

$$= p_1^2q_1^2 - p_1^2q_2^2 - q_1^2q_2^2 + q_1^2q_2^2$$

and, hence

$$E[S_1S_2] - E[S_1]E[S_2] = (f_{11} - f_{13} - f_{31} + f_{33}) - (p_1^2q_1^2 - p_1^2q_2^2 - q_1^2q_2^2 + q_1^2q_2^2)$$

$$= (f_{11} - p_1^2q_1^2) - (f_{13} - p_1^2q_2^2) - (f_{31} - q_1^2q_2^2) + (f_{33} - p_1^2q_2^2)$$

Again, using the relationship in Table 3, we have

$$E[S_1S_2] - E[S_1]E[S_2] = (f_{11} - (x_{11} - D)^2) - (f_{13} - (x_{12} + D)^2) - (f_{31} - (x_{21} + D)^2) + (f_{33} - (x_{22} - D)^2)$$

In conclusion, we have shown that the relationship between LD and correlation between haplotype of two locus is given by

$$\text{Cov}[ab] = 4D$$

Moreover, there is a relationship between covariance of two SNPs with $\{-1, 0, 1\}$ representation and LD as shown in the following equation.

$$\text{Cov}[S_1S_2] = (f_{11} - (x_{11} - D)^2) - (f_{13} - (x_{12} + D)^2) - (f_{31} - (x_{21} + D)^2) + (f_{33} - (x_{22} - D)^2)$$