<table>
<thead>
<tr>
<th>Category</th>
<th>Pathway</th>
<th>resting cells (FDR adjusted p-value*)</th>
<th>stimulated cells (FDR adjusted p-value*)</th>
<th>ChIP hits</th>
<th>Molecules in complete pathway</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoptosis and survival</td>
<td>APRIL and BAFF signaling</td>
<td>0.331960</td>
<td>0.000526</td>
<td>8</td>
<td>38</td>
<td>21.1%</td>
</tr>
<tr>
<td></td>
<td>BAD phosphorylation</td>
<td>0.000302</td>
<td>0.059930</td>
<td>12</td>
<td>42</td>
<td>28.6%</td>
</tr>
<tr>
<td></td>
<td>Caspase cascade</td>
<td>0.097170</td>
<td>0.001119</td>
<td>10</td>
<td>33</td>
<td>30.3%</td>
</tr>
<tr>
<td></td>
<td>Ceramides signaling pathway</td>
<td>0.003542</td>
<td>0.303600</td>
<td>9</td>
<td>38</td>
<td>23.7%</td>
</tr>
<tr>
<td></td>
<td>FAS signaling cascades</td>
<td>0.195900</td>
<td>0.000248</td>
<td>11</td>
<td>43</td>
<td>25.6%</td>
</tr>
<tr>
<td></td>
<td>HTRIAA signaling</td>
<td>0.004630</td>
<td>0.003386</td>
<td>12</td>
<td>50</td>
<td>24.0%</td>
</tr>
<tr>
<td></td>
<td>NO synthesis and signaling</td>
<td>0.002322</td>
<td>0.058840</td>
<td>12</td>
<td>55</td>
<td>21.8%</td>
</tr>
<tr>
<td>Cancer</td>
<td>Hyoxia-induced EMT in cancer and fibrosis</td>
<td>0.390200</td>
<td>0.000673</td>
<td>5</td>
<td>9</td>
<td>55.6%</td>
</tr>
<tr>
<td></td>
<td>PGE2 pathways in cancer</td>
<td>0.002322</td>
<td>0.145500</td>
<td>12</td>
<td>55</td>
<td>21.8%</td>
</tr>
<tr>
<td></td>
<td>Role of alpha-6/beta-4 integrins in carcinoma progression</td>
<td>0.002347</td>
<td>0.193300</td>
<td>11</td>
<td>45</td>
<td>24.4%</td>
</tr>
<tr>
<td></td>
<td>Some pathways of EMT in cancer cells</td>
<td>0.289700</td>
<td>0.000933</td>
<td>12</td>
<td>51</td>
<td>23.5%</td>
</tr>
<tr>
<td>Cardiac Hypertrophy</td>
<td>NF-AT signaling in Cardiac Hypertrophy</td>
<td>0.000585</td>
<td>0.005242</td>
<td>17</td>
<td>65</td>
<td>26.2%</td>
</tr>
<tr>
<td>Cell adhesion</td>
<td>Chemokines and adhesion</td>
<td>0.006815</td>
<td>0.004555</td>
<td>19</td>
<td>100</td>
<td>19.0%</td>
</tr>
<tr>
<td></td>
<td>Ephrin signaling</td>
<td>0.000520</td>
<td>0.000356</td>
<td>15</td>
<td>45</td>
<td>33.3%</td>
</tr>
<tr>
<td></td>
<td>PLAU signaling</td>
<td>0.004123</td>
<td>0.317700</td>
<td>9</td>
<td>39</td>
<td>23.1%</td>
</tr>
<tr>
<td>Cell cycle</td>
<td>Regulation of G1/S transition (part 1)</td>
<td>0.003542</td>
<td>0.011460</td>
<td>9</td>
<td>38</td>
<td>23.7%</td>
</tr>
<tr>
<td>Cytoskeleton remodelling</td>
<td>Role of PKA in cytoskeleton reorganisation</td>
<td>0.001058</td>
<td>0.143300</td>
<td>10</td>
<td>40</td>
<td>25.0%</td>
</tr>
<tr>
<td>Development</td>
<td>Angiopoietin - Tie2 signaling</td>
<td>0.002167</td>
<td>0.099500</td>
<td>9</td>
<td>35</td>
<td>25.7%</td>
</tr>
<tr>
<td></td>
<td>Angiotensin activation of Akt</td>
<td>0.002712</td>
<td>0.415900</td>
<td>9</td>
<td>46</td>
<td>19.8%</td>
</tr>
<tr>
<td></td>
<td>Delta- and kappa-type opioid receptors signaling via beta-arrestin</td>
<td>0.031770</td>
<td>0.007979</td>
<td>7</td>
<td>23</td>
<td>30.4%</td>
</tr>
<tr>
<td></td>
<td>Delta-type opioid receptor mediated cardioprotection</td>
<td>0.003026</td>
<td>0.289500</td>
<td>8</td>
<td>37</td>
<td>21.6%</td>
</tr>
<tr>
<td></td>
<td>EGFR signaling via PIP3</td>
<td>0.001044</td>
<td>0.005184</td>
<td>8</td>
<td>23</td>
<td>34.8%</td>
</tr>
<tr>
<td></td>
<td>Endothelin-1/EDNR A signaling</td>
<td>0.001779</td>
<td>0.004897</td>
<td>13</td>
<td>53</td>
<td>24.5%</td>
</tr>
<tr>
<td></td>
<td>FGF2-dependent induction of EMT</td>
<td>0.003886</td>
<td>0.647700</td>
<td>6</td>
<td>20</td>
<td>30.0%</td>
</tr>
<tr>
<td></td>
<td>Gastrin in differentiation of the gastric mucosa</td>
<td>0.003542</td>
<td>0.303600</td>
<td>9</td>
<td>38</td>
<td>23.7%</td>
</tr>
<tr>
<td></td>
<td>Leptin signaling via P3K-dependent pathway</td>
<td>0.00149</td>
<td>0.030460</td>
<td>12</td>
<td>47</td>
<td>25.5%</td>
</tr>
<tr>
<td></td>
<td>Ligand-independent activation of ESR1 and ESR2</td>
<td>0.002022</td>
<td>0.079550</td>
<td>10</td>
<td>44</td>
<td>22.7%</td>
</tr>
<tr>
<td></td>
<td>MAG-dependent inhibition of naurile outgrowth</td>
<td>0.133300</td>
<td>0.000434</td>
<td>10</td>
<td>37</td>
<td>27.0%</td>
</tr>
<tr>
<td></td>
<td>Melanocyte development and pigmentation</td>
<td>0.000996</td>
<td>0.101300</td>
<td>11</td>
<td>49</td>
<td>22.4%</td>
</tr>
<tr>
<td></td>
<td>NOTCH1-mediated pathway for NF-KB activity modulation</td>
<td>0.105700</td>
<td>0.001348</td>
<td>7</td>
<td>34</td>
<td>20.6%</td>
</tr>
<tr>
<td></td>
<td>PEDF signaling</td>
<td>0.000996</td>
<td>0.002973</td>
<td>13</td>
<td>49</td>
<td>26.5%</td>
</tr>
<tr>
<td></td>
<td>PIP3 signaling in cardiac myocytes</td>
<td>0.000027</td>
<td>0.030460</td>
<td>14</td>
<td>47</td>
<td>29.8%</td>
</tr>
<tr>
<td></td>
<td>Regulation of epithelial-to-mesenchymal transition (EMT)</td>
<td>0.001934</td>
<td>0.000329</td>
<td>18</td>
<td>64</td>
<td>28.1%</td>
</tr>
<tr>
<td></td>
<td>Role of CDK5 in neuronal development</td>
<td>0.001616</td>
<td>0.521100</td>
<td>9</td>
<td>34</td>
<td>26.5%</td>
</tr>
<tr>
<td></td>
<td>Role of HDAC and calcium/calmodulin-dependent kinase (CaMK) in control of skeletal myogenesis</td>
<td>0.000106</td>
<td>0.005550</td>
<td>17</td>
<td>54</td>
<td>31.5%</td>
</tr>
<tr>
<td></td>
<td>S1P1 signaling pathway</td>
<td>0.002022</td>
<td>0.070550</td>
<td>11</td>
<td>44</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>S1P3 receptor signaling pathway</td>
<td>0.00364</td>
<td>0.001247</td>
<td>14</td>
<td>43</td>
<td>32.8%</td>
</tr>
<tr>
<td></td>
<td>Thrombopoietin-regulated cell processes</td>
<td>0.031330</td>
<td>0.001697</td>
<td>11</td>
<td>45</td>
<td>24.4%</td>
</tr>
<tr>
<td></td>
<td>VESG signaling and activation</td>
<td>0.001734</td>
<td>0.065120</td>
<td>10</td>
<td>43</td>
<td>23.3%</td>
</tr>
<tr>
<td>DNA damage</td>
<td>Inhibition of telomerase activity and cellular senescence</td>
<td>0.000460</td>
<td>0.270000</td>
<td>6</td>
<td>20</td>
<td>30.0%</td>
</tr>
<tr>
<td>G-protein signaling</td>
<td>Proinsulin C peptide signaling</td>
<td>0.001548</td>
<td>0.004345</td>
<td>14</td>
<td>52</td>
<td>26.9%</td>
</tr>
<tr>
<td></td>
<td>RhoA regulation pathway</td>
<td>0.105700</td>
<td>0.000035</td>
<td>12</td>
<td>34</td>
<td>35.3%</td>
</tr>
<tr>
<td></td>
<td>S1P2 receptor signaling</td>
<td>0.002167</td>
<td>0.007654</td>
<td>10</td>
<td>35</td>
<td>28.6%</td>
</tr>
<tr>
<td>Category</td>
<td>Pathway</td>
<td>resting cells</td>
<td>stimulated cells</td>
<td>ChIP hits</td>
<td>Molecules in complete pathway</td>
<td>Ratio</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>CD28 signaling</td>
<td>0.000493</td>
<td>0.005500</td>
<td>14</td>
<td>54</td>
<td>25.9%</td>
</tr>
<tr>
<td></td>
<td>CD40 signaling</td>
<td>0.001934</td>
<td>0.015080</td>
<td>14</td>
<td>64</td>
<td>21.9%</td>
</tr>
<tr>
<td></td>
<td>Fc epsilon RI pathway</td>
<td>0.02322</td>
<td>0.020420</td>
<td>12</td>
<td>55</td>
<td>21.8%</td>
</tr>
<tr>
<td></td>
<td>Fc-gamma R-mediated phagocytosis in macrophages</td>
<td>0.02347</td>
<td>0.674200</td>
<td>9</td>
<td>45</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td>Function of MEF2 in T lymphocytes</td>
<td>0.04603</td>
<td>0.013470</td>
<td>14</td>
<td>50</td>
<td>28.0%</td>
</tr>
<tr>
<td></td>
<td>ICOS pathway in T-helper cell</td>
<td>0.02712</td>
<td>0.027710</td>
<td>12</td>
<td>46</td>
<td>26.1%</td>
</tr>
<tr>
<td></td>
<td>IL-17 signaling pathways</td>
<td>0.00063</td>
<td>0.010390</td>
<td>15</td>
<td>60</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>NFAT in immune response</td>
<td>0.001342</td>
<td>0.013850</td>
<td>12</td>
<td>51</td>
<td>23.5%</td>
</tr>
<tr>
<td></td>
<td>PGE2 common pathways</td>
<td>0.001546</td>
<td>0.276300</td>
<td>11</td>
<td>52</td>
<td>21.2%</td>
</tr>
<tr>
<td></td>
<td>PIP3 signaling in B lymphocytes</td>
<td>0.001479</td>
<td>0.059930</td>
<td>11</td>
<td>42</td>
<td>26.2%</td>
</tr>
<tr>
<td></td>
<td>Regulation of T cell function by CTLA-4</td>
<td>0.000086</td>
<td>0.039200</td>
<td>11</td>
<td>36</td>
<td>30.6%</td>
</tr>
<tr>
<td></td>
<td>GTP metabolism</td>
<td>0.002036</td>
<td>0.000012</td>
<td>18</td>
<td>54</td>
<td>33.3%</td>
</tr>
<tr>
<td></td>
<td>Oxytocin signaling in uterus and mammary gland</td>
<td>0.04265</td>
<td>0.187600</td>
<td>13</td>
<td>60</td>
<td>21.7%</td>
</tr>
<tr>
<td></td>
<td>Regulation of eNOS activity in endothelial cells</td>
<td>0.001934</td>
<td>0.015080</td>
<td>16</td>
<td>64</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>Relhin signaling pathway</td>
<td>0.111600</td>
<td>0.005890</td>
<td>12</td>
<td>48</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>Role of kappa-type opioid receptor in heart</td>
<td>0.001510</td>
<td>0.005688</td>
<td>10</td>
<td>33</td>
<td>30.3%</td>
</tr>
<tr>
<td></td>
<td>ACM regulation of nerve impulse</td>
<td>0.010410</td>
<td>0.000423</td>
<td>13</td>
<td>46</td>
<td>28.3%</td>
</tr>
<tr>
<td></td>
<td>Dopamine D2 receptor transactivation of PDGFR in CNS</td>
<td>0.003322</td>
<td>0.008943</td>
<td>9</td>
<td>26</td>
<td>34.6%</td>
</tr>
<tr>
<td></td>
<td>Receptor-mediated axon growth regulation</td>
<td>0.004010</td>
<td>0.001697</td>
<td>11</td>
<td>45</td>
<td>24.4%</td>
</tr>
<tr>
<td></td>
<td>Membrane trafficking and signal transduction of G-alpha (i) heterotrimeric G-protein</td>
<td>0.003377</td>
<td>0.000002</td>
<td>11</td>
<td>19</td>
<td>57.9%</td>
</tr>
<tr>
<td></td>
<td>Role of Parkin in the Ubiquitin-Proteasomal Pathway</td>
<td>0.001330</td>
<td>0.000198</td>
<td>10</td>
<td>24</td>
<td>41.7%</td>
</tr>
<tr>
<td></td>
<td>Activation of PKC via G-Protein coupled receptor</td>
<td>0.001548</td>
<td>0.000237</td>
<td>17</td>
<td>52</td>
<td>32.7%</td>
</tr>
<tr>
<td></td>
<td>AKT signaling</td>
<td>0.003364</td>
<td>0.005451</td>
<td>12</td>
<td>43</td>
<td>27.9%</td>
</tr>
<tr>
<td></td>
<td>Calcium signaling</td>
<td>0.00347</td>
<td>0.076230</td>
<td>13</td>
<td>45</td>
<td>28.9%</td>
</tr>
<tr>
<td></td>
<td>cAMP signaling</td>
<td>0.000739</td>
<td>0.000655</td>
<td>12</td>
<td>38</td>
<td>31.6%</td>
</tr>
<tr>
<td></td>
<td>CHREBP regulation pathway</td>
<td>0.000815</td>
<td>0.289200</td>
<td>6</td>
<td>21</td>
<td>28.6%</td>
</tr>
<tr>
<td></td>
<td>CREB pathway</td>
<td>0.000014</td>
<td>0.070550</td>
<td>12</td>
<td>44</td>
<td>27.3%</td>
</tr>
<tr>
<td></td>
<td>P53 signaling pathway</td>
<td>0.153200</td>
<td>0.000632</td>
<td>9</td>
<td>39</td>
<td>23.1%</td>
</tr>
<tr>
<td></td>
<td>Sirt3 and NuRD in transcription regulation</td>
<td>0.003542</td>
<td>0.309600</td>
<td>9</td>
<td>38</td>
<td>23.7%</td>
</tr>
<tr>
<td></td>
<td>Non-genomic (rapid) action of Androgen Receptor</td>
<td>0.001958</td>
<td>0.014630</td>
<td>10</td>
<td>40</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>Macropinocytosis regulation by growth factors</td>
<td>0.00443</td>
<td>0.039530</td>
<td>16</td>
<td>63</td>
<td>25.4%</td>
</tr>
</tbody>
</table>

* p-values in bold: FDR < 0.05%