Detailed mathematical solution for the trinomial expansion of the Hardy–Weinberg principle: case of a null allele

\(r_1 \) is frequency of loss

\(p \) is frequency of \(p \) allele

\(q \) is frequency of \(q \) allele

Frequency of all possible (3) alleles: \(1 = r_1 + p + q \)

Expansion of Hardy–Weinberg: \(1 = (r_1 + p + q)^2 \)

\[
1 = p^2 + 2pr_1 + q^2 + 2qr_1 + r_1^2 + 2pq
\]

\#no_calls/#sampled = \(r_1^2 \)

\#Heterozygotes/#sampled = \(AB = 2pq \) \(\rightarrow pq = AB / 2 \)

\#p_homozygotes/#sampled = \(AA = p^2 + 2pr_1 = p(p + 2r_1) \)

\#q_homozygotes/#sampled = \(BB = q^2 + 2qr_1 = q(q + 2r_1) \)

Multiplying the last two lines:

\(AABB = pq(p + 2r_1)(q + 2r_1) = AB / 2(p + 2r_1)(q + 2r_1) \)

\[
2AABB / AB = (p + 2r_1)(q + 2r_1) = pq + 2pr_1 + 2qr_1 + 4r_1^2 = pq + 2r_1(p + q + r_1 + r_1) = AB / 2 + 2r_1(1 + r_1) = AB / 2 + 2r_1 + 2r_1^2
\]

\(0 = r_1^2 + r_1 + AB / 4 - AABB / AB \)

\(r_1 = \{-1 + [1 - 4(AB / 4 - AABB / AB)]^{0.5}\} / 2 = \{[1 - AB + 4AABB / AB]^{0.5} - 1\} / 2 = [0.25 - 0.25AB + AABB / AB]^{0.5} - 0.5 \)
Detailed mathematical solution for the trinomial expansion of the Hardy–Weinberg principle: case of an extra (third) allele

\(r_g \) is frequency of insertion that produces \(pq \) chromosome

\(p \) is frequency of \(p \) allele

\(q \) is frequency of \(q \) allele

Frequency of all possible (3) alleles: \(1=p+q+r_g \)

Expansion of Hardy–Weinberg: \(1=(p+q+r_g)^2 \)

\[
1=p^2+q^2+2pr_g+2qr_g+r_g^2+2pq
\]

\#Heterozygotes/#sampled=\(AB=2pr_g+2qr_g+r_g^2+2pq \)

\#p_homozygotes/#sampled=\(AA=p^2 \rightarrow p=AA^{0.5} \)

\#q_homozygotes/#sampled=\(BB=q^2 \rightarrow q=BB^{0.5} \)

\(AB=2AA^{0.5}r_g+2BB^{0.5}r_g+r_g^2+2AA^{0.5}BB^{0.5} \)

\(0=r_g^2+r_g(2AA^{0.5}+2BB^{0.5})+2AA^{0.5}BB^{0.5}-AB \)

\[
r_g=\frac{-(2AA^{0.5}+2BB^{0.5})+[(2AA^{0.5}+2BB^{0.5})^2-8AA^{0.5}BB^{0.5}+4AB]^{0.5}}{2}=[AA+2AA^{0.5}BB^{0.5}+BB-2AA^{0.5}BB^{0.5}+AB]^{0.5}-AA^{0.5}-BB^{0.5}=[AA+BB+AB]^{0.5}-AA^{0.5}-BB^{0.5}
\]