Supplementary Material
for
Comparison and calibration of transcriptome data from
RNA-Seq and tiling arrays

1 Sample Preparation

Animals were synchronized by treating a mixed stage hermaphrodite population with bleach to collect embryos. The embryos surviving bleach treatment were incubated without food, causing the larvae to arrest at the L1 stage upon hatching. Starved L1 larvae were plated on standard NGM plates in the presence of food (OP50) and raised at 25°C. Staging was determined by examining a subset of animals under Nomarski optics at intervals for vulval and germline development.

To isolate RNA, we first centrifuged medium- to large-scale preparations of staged *C. elegans* nematodes on a sucrose cushion to remove debris. The worms were then recovered in several washes of S basal. Total RNA isolation was performed by adding 4 volumes of Trizol (Gibco) per volume of packed worms. After two rounds of freeze/thaw and vortexing, the slurry was extracted with 2 volumes of chloroform. The aqueous layer was precipitated with one volume of isopropanol and the pellet washed with 70% ethanol. The pellet was resuspended in water and the concentration determined by UV spectrometry. RNA quality was assessed by examining an aliquot run on an ethidium bromide stained gel for discrete ribosomal and transfer RNA bands, as well as an mRNA "smear".

2 Tiling Array

We followed the standard Affymetrix protocol for cDNA synthesis, using the GeneChip® WT Double-Stranded cDNA Synthesis Kit (#900813). The cDNA was then labeled using reagents from Affymetrix. 7.5 μg double stranded cDNA is combined with 4.8 μl of 10X Fragmentation buffer, 1.5 μl of UDG (10U/μl), 2.25 μl of APE 1 (100U/μl), and H2O to 48 μl. The samples were incubated at 37°C for 1h, 93°C for 2 min, and 4°C for 2-10 min. Of this reaction, 45 μl was placed in a new tube. In a separate tube, 12 μl of 5X TdT buffer, 2 μl of TdT (30U/μl), and 1 μl of DNA labeling reagent (5mM) were mixed together. This mixture was then added to the 45 μl of fragmented dsDNA, mixed, and incubated at 37°C for 1h, 70°C for 10 min, and 4°C for 2-10 min. Array hybridization and processing were performed at the Keck Facility at Yale University using standard Affymetrix protocols for tiling array hybridization.

Affymetrix’s GCOS software was used to convert the tiling array hybridization images to numerical values indicating the intensity of each perfect-match (PM) and mismatch (MM) probe. These are provided as CEL files for each tiling array replicate. The L2-poly(A) dataset had 2 tiling array replicates; the rest had 3 replicates. Affymetrix also provides an array design file that specifies the location of each PM probe on the *C. elegans* genome, based on the WormBase WS170 build. We combined the CEL files with this BPMAP file to map the intensity values on to the genomic coordinate, assigning each interval the PM - MM value. A pseudomedian smoothing filter was applied with a window size of 110 base
Pseudo-replicate 1 (num reads) Pseudo-replicate 2 (num reads) Correlation

1M 2M 0.980
2M 4M 0.990
4M 8M 0.995
8M 16M 0.991
16M 32M 0.998

Table 1: Correlations between RNA-Seq pseudo-replicates. Pseudo-replicates were constructed by randomly selecting various numbers of reads from all available. Pearson correlations were then computed for the given pairs of resulting signals.

Maxgap/minrun segmentation was carried out by combining the coverage count of the positive and negative strand of each base pair, and then optimizing parameters as described in the text. The final parameters chosen for sequencing the L2 life stage were $T^*_a = 556$, $G^*_a = 30$ bp, and $R^*_a = 100$ bp, giving an FPR of 0.050 and a sensitivity of 0.67.

3 RNA-Seq

The same samples as described above for the tiling array were sequenced. The RNA-Seq data was derived from [2] and details are available in the supplement associated with that publication. Briefly, the total RNA was then prepared for sequencing by size-fractionating the polyA+ RNA and excising the 100 to 300 bp fractions. Gel-purified cDNA was modified using the Illumina genomic DNA sequencing kit, and after sequencing with the Illumina 1G analyzer, the Firecrest and Bustard applications were run with default parameters to obtain reads from the image files. The resulting reads were then aligned to the genome using MAQ, and to a splice junction and splice leader database using crossmatch. Results from these alignments were combined to create an overall coverage count per base pair. Only reads that uniquely mapped were used in this analysis.

We observed the RNA-Seq data to have very high signal-to-noise and thus did not obtain replicates. We confirmed this by constructing pseudo-replicates. We randomly selected 1M, 2M, 4M, 8M, 16M, and all 32M of the total read set. We then computed the Pearson correlations between pairs of the resulting signals. Table 1 shows that all correlations are very high (≥ 0.98).

Maxgap/minrun segmentation was carried out by combining the coverage count of the positive and negative strand of each base pair, and then optimizing parameters as described in the text. The final parameters chosen for sequencing the L2 life stage were $T^*_a = 2$, $G^*_a = 5$ bp, and $R^*_a = 50$ bp, giving an FPR of 0.020 and a sensitivity of 0.83.

The sequencing data has base pair resolution, while the array data provides a signal value for every 25 bp probe. In some of our analyses, it was necessary to construct a “pseudoarray” from the sequencing data to put it on the same basis as the tiling array. We did this by computing the RPKM over all read counts for the coordinates within the array probes. Figure 1 shows that the signal properties are not significantly altered by this transformation.

4 Gold Standard Annotation

All analyses presented were based on the WormBase WS170 genome build and the corresponding WS170 annotation [6]. WormBase provides a comprehensive annotation that includes regions confirmed with EST evidence and also those predicted from various gene finding programs. We use a conservative subset of this annotation as defined by [2]. Briefly, only introns identified as “Confirmed” are included and any that are identified as a coding gene or a pseudogene by any gene prediction program are excluded. Only those exons
Figure 1: Raw sequencing vs. pseudoarray gene expression levels using the WormBase composite gene model. The pseudoarray performs almost identically with the raw sequencing (Spearman’s correlation = 0.99, Adjusted R-squared = 0.999) when a large enough number of data points are included (i.e., when binned into genes instead of just exons).
flanked by Confirmed introns are included and only those not called intronic by any program. Intergenic regions are those not annotated as pseudogene, RNA, exonic, or intronic, and also bases within 200 bp of the start of a CDS for within 700 bp of the 3' end of a CDS are excluded.

For the ROC curve analyses, exonic nucleotides were considered positives and both intronic and intergenic nucleotides were taken as the negatives. Sensitivity and false positive rates were then calculated as described in the literature [1, 7].

For analyses relying on a single gold standard set of exons, we must decide how to treat alternative isoforms to avoid double counting exons. We handled this by constructing a “composite gene model” by projecting isoforms onto the genome, in effect taking the union of all annotated exons. We call the resulting exons “composite exons.”

5 GC Content

RPKM and mean intensity were calculated as described above. The WS170 build of the *C. elegans* genome was used to infer the GC content for each composite gene, excluding introns as usual. In order to determine the significance level of the bias, we first set an expression threshold of the median of the RNA-Seq or tiling array data, respectively, and compared the resulting GC distribution to the overall GC distributions with the Kolmogorov-Smirnov test.

6 Mapping Bias

In order to determine whether the TARs predominantly overlap with the 5’ or 3’ end of annotated exons, the TARs were intersected with the exon annotation and aggregated over all exons (Figures 3a, 3b). The exon length was normalized from zero to one in order to
Figure 3: Aggregated Mapping Bias of RNA-Seq and Tiling Array. The set of TARs was intersected with exons, and the relative location from the 5' to 3' end where the TARs intersect were aggregated over all exons. The x-axis is the normalized location along exons, and the y-axis is the number of TARs that overlapped at that location. The analysis was conducted for TARs computed for a range of thresholds. The symmetrical shape of the curves for both (a) tiling arrays and (b) RNA-Seq indicate that there is no mapping bias in both platforms. However, the gradual curves in the array indicate that array TAR boundaries do not coincide with exon boundaries. In contrast, the flat curves with sharp drops at boundaries for RNA-Seq indicate that RNA-Seq TAR boundaries coincide closely with exon boundaries.
Table 2: Mappability of array probes.

<table>
<thead>
<tr>
<th>Perfect Matches</th>
<th>Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4,160 (control probes)</td>
</tr>
<tr>
<td>1</td>
<td>2,942,368</td>
</tr>
<tr>
<td>≥2</td>
<td>182,081</td>
</tr>
<tr>
<td>2-5</td>
<td>141,976</td>
</tr>
<tr>
<td>6-10</td>
<td>16,147</td>
</tr>
<tr>
<td>11-20</td>
<td>12,556</td>
</tr>
<tr>
<td>≥21</td>
<td>11,402</td>
</tr>
<tr>
<td>total</td>
<td>3,128,609</td>
</tr>
</tbody>
</table>

We determined the mappability of probes by aligning them against the *C. elegans* genome (WS170). We employed eland\textsubscript{25}, a short-read alignment tool from the Illumina Genome Analyzer Suite. The probes are expected to map to a unique location in the genome. However, we found that \(~6\%\) of the probes can be mapped to multiple locations. Table 2 reports the numbers.
Figure 4: As in main paper Figure 1, except that the tiling array is hybridized with L2-tot RNA. The expression levels are still reasonably correlated although less so with a Spearman’s coefficient of 0.80.
Figure 5: As in main paper Figure 3, but gene expression levels are based on RNA-Seq data instead of tiling array data.
References

