Table S2

Codon-based test of purifying selection for analysis between *P. caudatum* Hsp70 sequences

<table>
<thead>
<tr>
<th>Paramaecium caudatum PcHsp70</th>
<th>CY1a</th>
<th>CY1b</th>
<th>CY1c</th>
<th>CY2a</th>
<th>CY2b</th>
<th>ER1a</th>
<th>ER1b</th>
<th>ER2a</th>
<th>ER2b</th>
<th>ER2c</th>
<th>MT1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY1a</td>
<td>0.040</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>CY1b</td>
<td>0.020</td>
<td>0.009</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>CY1c</td>
<td>0.001</td>
<td>0.005</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>CY2a</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.494</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>CY2b</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.248</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>ER1a</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.299</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>ER1b</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.148</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>ER2a</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.074</td>
<td>0.148</td>
<td>0.000</td>
</tr>
<tr>
<td>ER2b</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.036</td>
<td>0.294</td>
<td>0.000</td>
</tr>
<tr>
<td>ER2c</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.069</td>
<td>0.151</td>
<td>0.000</td>
</tr>
<tr>
<td>MT1a</td>
<td>0.000</td>
</tr>
</tbody>
</table>

The probability of rejecting the null hypothesis of strict-neutrality \(d_N = d_S \) (above diagonal) in favor of the alternative hypothesis of purifying selection \(d_N < d_S \) (below diagonal) is shown; \(d_S \) and \(d_N \) are the numbers of synonymous and nonsynonymous substitutions per site, respectively. The analyses were conducted using the Nei-Gojobori method and involved 11 nucleotide sequences. All ambiguous positions were removed for each sequence pair with a total of 465 positions in the final dataset. Analyses were conducted in MEGA5.