Additional File 2—Graphs for the other control datasets

Explanation

In the text we explained that we preferred the use of the background dataset as the control dataset, but that we had performed the analyses using the coding, negative and *E. coli* datasets. This file gives the ROC curves for these analyses. The graphs correspond to the graphs in the main text.

Figures 1 to 10 use the coding dataset as control, Figures 11 to 20 and the negative dataset as control and Figures 21 to 30 the *E. coli* dataset as the control.
Figure 1: ROC curve for the positive dataset versus coding sequences

Figure 2: ROC curve for the background dataset (that is randomly selected real mouse DNA) versus coding sequences
Figure 3: ROC curve for long positive S/MARs versus coding sequences

Figure 4: By the definitions used for the other datasets there are no AT-rich 10kb regions in the coding dataset and so the corresponding ROC curve is omitted.
Figure 5: ROC curve for AT-poor 10kb regions versus coding sequences

Figure 6: ROC curve for finding S/MARs that are AT-rich versus coding sequences
Figure 7: ROC curve for finding S/MARs that are AT-poor versus coding sequences

Figure 8: ROC curve for the H’-Rule for three divisions of the dataset — positive compared with coding sequences. a) black (middle curve) using all the positive dataset; b) red (top curve) AT-poor S/MARs; c) blue (bottom curve) AT-rich S/MARs.
Figure 9: ROC curve for the positive with-LIS data versus coding sequences

Figure 10: ROC curve for the positive non-LIS data versus coding sequences
Figure 11: ROC curve for the positive dataset versus negative dataset

Figure 12: ROC curve for the background dataset (that is randomly selected real mouse DNA) versus negative dataset
Figure 13: ROC curve for long positive S/MARs versus negative dataset

Figure 14: ROC curve for AT-rich 10kb regions versus negative dataset
Figure 15: ROC curve for AT-poor 10kb regions versus negative dataset

Figure 16: ROC curve for finding S/MARs that are AT-rich versus negative dataset
Figure 17: ROC curve for finding S/MARs that are AT-poor versus negative dataset.

Figure 18: ROC curve for the H'-Rule for three divisions of the dataset — positive compared with negative dataset. a) black (middle curve) using all the positive dataset; b) red (top curve) AT-poor S/MARs; c) blue (bottom curve) AT-rich S/MARs.
Figure 19: ROC curve for the positive with-LIS data versus negative dataset

Figure 20: ROC curve for the positive non-LIS data versus negative dataset
Figure 21: ROC curve for the positive dataset versus *E. coli* dataset

Figure 22: ROC curve for the background dataset (that is randomly selected real mouse DNA) versus *E. coli* dataset
Figure 23: ROC curve for long positive S/MARs versus E. coli dataset

Figure 24: ROC curve for AT-rich 10kb regions versus E. coli dataset
Figure 25: ROC curve for AT-poor 10kb regions versus *E. coli* dataset

Figure 26: ROC curve for finding S/MARs that are AT-rich versus *E. coli* dataset
Figure 27: ROC curve for finding S/MARs that are AT-poor versus *E. coli* dataset

Figure 28: ROC curve for the H’-Rule for three divisions of the dataset — positive compared with *E. coli* dataset. a) black (middle curve) using all the positive dataset; b) red (top curve) AT-poor S/MARs; c) blue (bottom curve) AT-rich S/MARs.
Figure 29: ROC curve for the positive with-LIS data versus *E. coli* dataset

Figure 30: ROC curve for the positive non-LIS data versus *E. coli* dataset