Copyright © 2005 Jean-Baptiste Veyrieras, INRA.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being "GNU General Public License" and "Free Software Needs Free Documentation", the Front-Cover text being “A GNU Manual”, and with the Back-Cover Text being (a) (see below). A copy of the license is included in the section entitled “GNU Free Documentation License”.

(a) The Back-Cover Text is: “You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development.”
Short Contents

1 Introduction ................................................................. 1
2 Data Base ............................................................. 4
3 Meta Analysis ........................................................... 8
4 Visualization ............................................................ 18
5 Utilities ................................................................. 31
6 Tutorial ................................................................. 36
A Copying This Manual ................................................... 54
# Table of Contents

1 Introduction .................................................. 1  
   1.1 General Overview ........................................ 1  
      1.1.1 What is MetaQTL .................................... 1  
      1.1.2 Definition of the Problem ........................................ 1  
   1.2 Citing MetaQTL ........................................... 2  
   1.3 How to Get and Install MetaQTL .......................... 2  
   1.4 Getting Help ............................................ 2  
   1.5 General Usage of the Programs ........................... 2  
   1.6 References .............................................. 2  

2 Data Base .................................................... 4  
   2.1 Overview ................................................ 4  
      2.1.1 Experiment Table ......................................... 4  
      2.1.2 Trait Ontology Table ................................... 5  
      2.1.3 GLMdb .................................................. 5  
      2.1.4 QTLdb .................................................. 6  
   2.2 MetaDB ................................................... 6  
      2.2.1 Command Line Options ................................... 6  

3 Meta Analysis ................................................ 8  
   3.1 Consensus map ............................................. 8  
      3.1.1 InfoMap ............................................... 8  
         3.1.1.1 Method ........................................... 8  
         3.1.1.2 Command Line Options ............................ 8  
         3.1.1.3 Output ............................................ 9  
      3.1.2 ConsMap ............................................... 10  
         3.1.2.1 Method .......................................... 10  
         3.1.2.2 Command Line Options .......................... 10  
         3.1.2.3 Output .......................................... 11  
   3.2 QTL Projection ............................................ 11  
      3.2.1 Method ................................................. 11  
      3.2.2 QTLProj ............................................... 12  
         3.2.2.1 Command Line Options ............................ 12  
         3.2.2.2 Output files ................................... 12  
   3.3 QTL Clustering ............................................ 13  
      3.3.1 ChustQTL .............................................. 13  
         3.3.1.1 Method .......................................... 13  
         3.3.1.2 Command Line Options .......................... 13  
         3.3.1.3 Output .......................................... 13  
      3.3.2 QTLTree ............................................... 15  
         3.3.2.1 Method .......................................... 15  
         3.3.2.2 Command Line Options .......................... 16  
         3.3.2.3 Output .......................................... 16
Chapter 1: Introduction

1 Introduction

1.1 General Overview

1.1.1 What is MetaQTL

MetaQTL is a suite of programs designed to carry out meta-analysis of QTL mapping experiments. A QTL mapping experiment consists in a genetic linkage map and a set of quantitative trait loci (QTL) which have been detected and positioned onto the genetic linkage map. This package is composed by several programs written in pure Java. These programs can perform various tasks, including reformatting, analyzing data and visualizing the results of the analyses. Presently the programs can handle data from backcross, intercrosses and recombinant inbreds, as well as a few other experimental designs. This project is ongoing and suggestions are welcome for further improvements and enhancements.

1.1.2 Definition of the Problem

Since the last decade, the advent of molecular markers have accelerated the pace of discovering the loci which are implied in quantitative trait variation. Quantitative Trait Loci (QTL) mapping usually begins with the collection of genotypic (based on molecular markers) and phenotypic data from a segregating population. First, from the genotypic data the markers are both ordered and positioned on a genetic map using standard linkage mapping approaches. Secondly, refinement of analytical methods have enabled to detect one ore several QTL on each chromosome (see for instance Lander and Botstein 1989, Zeng 1994). Nevertheless due to the limiting number of individuals and generations in usual experiment this approach generally leads to QTL locations with a confidence interval (CI) around 10 cM (Kearsey 1998) which in plant generally corresponds to a thousand of genes or more.

Due to its relative simplicity and its compelling concept QTL mapping has been widely used and more and more QTL detection results are now available in public databases (e.g in maize at http://www.maizegdb.org). One of the main purpose of these databases was to facilitate the comparison of different QTL detection results by providing both standard description of these results and ontologies (see for instance the trait ontology at http://www.gramene.org/plant\_ontology/). Relevance of comparative analysis of QTL studies have been illustrated by several authors (Khavkin 1997 and 1998, Lin 1995). However these studies often relied on simple descriptive statistics.

QTL congruency study was partially improved thanks to Goffinet and Gerber (2000) who proposed a meta-analysis based approach in order to integrate QTL results from several experiments. Their method makes it possible to evaluate how many “actual” QTL locations underly the distribution of the observed QTL on the genome. This approach has been implemented in BioMercator by Arcade et al. (2004). This software allows user to merge both markers and QTL onto a consensus map by means of an iterative projection procedure. Then the algorithm devised by Goffinet and Gerber (2000) can be applied to evaluate the likelihood of clustering the observed QTL in 1,2,3 or 4 groups. Afterward, the optimal number of clusters is selected by using a Akaike like criterion. Alghough original this approach suffers from the absence of indicator to assess the consensus map quality and from the limiting number of QTL clusters which can be explored.

Based on recent methodological developments, MetaQTL implements a series of Java programs in order to carry out whole-genome QTL meta-analysis. All the programs in MetaQTL are command line programs. Each program does a small job and the user can easily combine the programs as a group to do a complete analysis.
Chapter 1: Introduction

1.2 Citing MetaQTL

In publications you should cite this manual.


1.3 How to Get and Install MetaQTL

MetaQTL is available at http://bioinformatics.org/mqtl. As MetaQTL is entirely written in Java (1.5) it should be run on most of operating systems provided that a compatible Java Virtual Machine (1.5) has been previously installed on your machine. Otherwise go to http://java.sun.com/downloads/index.html: then download and install the last version of the Java 2 Platform. To run the programs of MetaQTL you must have updated the Java CLASSPATH by adding the path to the jar archive ‘metaqtl.jar’ included into the MetaQTL distribution. Under an UNIX like operating system this can be done as follows:

```
bash$ export CLASSPATH=${CLASSPATH}:/path/to/metaqtl/directory/metaqtl.jar
```

Under Windows 9x/NT/2000/XP you can look at http://support.microsoft.com/ to find how to update or create the environment variable CLASSPATH. Generally, to view or change environment variables you have to apply the following steps:

- Right-click My Computer, and then click Properties.
- Click the Advanced tab.
- Click Environment variables.
- Click one the following options, for either a user or a system variable:
  - Click New to add a new variable name and value.
  - Click an existing variable, and then click Edit to change its name or value (here the value will be the entire file path from the root of the disk to the jar archive of MetaQTL).

In the next sections, the examples are given assuming the CLASSPATH have been correctly set.

1.4 Getting Help

For any questions or troubles about the use of MetaQTL, contact J.B. Veyrieras by email at veyrieras@moulon.inra.fr.

1.5 General Usage of the Programs

The programs in the MetaQTL suite all have the same look and feel and are heavily influenced by UNIX programs. They can only be used as command line programs. The options -v, --verbose and -h, --help are common to all the programs. The first one activates the verbosity mode and the second one can be used to display a brief help on program usage.

1.6 References


2 Data Base

2.1 Overview

The first phase in using MetaQTL is to create the database to store the QTL mapping experiments. The database here relies on a simple multiple file framework. All the tables of the database are plain text file where the first line contains the labels of the columns and the following lines represents the records. For both the header and the records the fields are separated by a tabulation. The global database (METAdb) consists of 3 tables, the experiment table, the trait ontology table and the marker dictionary table, plus 2 sub databases, the genetic linkage map database (GLMdb) and the QTL database (QTLdb). In the next sections we provide a full description of the tables of the database. We have adopted the following convention to specify each field of the tables: the fields in bold are required, i.e they must be specified in the header of the file while the other can be ignored. For each field we have indicated the type of the value between brackets (e.g STRING, INTEGER, BOOLEAN,...).

2.1.1 Experiment Table

The experiment table summarizes the parameters of each mapping experiment. This table contains the following fields:

- **map** (STRING) : the name of the mapping experiment which must be unique.
- **mapping.function** (STRING) : the name of the mapping function used to build the genetic map for this mapping experiment. Presently the possible values are:
  - haldane
  - kosambi
- **mapping.unit** (STRING) : the unit of the genetic distances of the genetic linkage map. Possible values are M for Morgan or cM for centiMorgan.
- **mapping expansion** (BOOLEAN) : 1 if the genetic linkage map of this mapping experiment must be rescaled.
- **mapping.cross** : the cross design used to build the map (may differ from the cross.type).
- **cross.type** (STRING) : the cross design used to build the genetic linkage map. MetaQTL is able to deal with various types of experimental designs. The design is encoded by a string of characters. For example BC stands for backcross, SF<i> stands for selfed intercross lines and the integer <i> indicates the generation (if <i>=2 then we have a classical F2). Experimental designs presently supported are listed in the table below (the cross type naming and labelling convention comes from QTLCartographer).

<table>
<thead>
<tr>
<th>Cross type</th>
<th>Code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backcross</td>
<td>BC</td>
<td>BC</td>
</tr>
<tr>
<td>Selfed generation &lt;i&gt; intercross</td>
<td>SF&lt;i&gt;</td>
<td>SF2</td>
</tr>
<tr>
<td>Randomly mated generation &lt;i&gt; intercross</td>
<td>RF&lt;i&gt;</td>
<td>RF3</td>
</tr>
<tr>
<td>Recombined Inbred via selfing</td>
<td>RI0</td>
<td>RI0</td>
</tr>
<tr>
<td>Recombined Inbred via sib mating</td>
<td>RI1</td>
<td>RI1</td>
</tr>
<tr>
<td>Intermated (&lt;i&gt; generations) Recombined Inbred via selfing</td>
<td>IRI&lt;i&gt;</td>
<td>IRI&lt;i&gt;0</td>
</tr>
<tr>
<td>Intermated (&lt;i&gt; generations) Recombined Inbred via sib mating</td>
<td>IRI&lt;i&gt;1</td>
<td>IRI&lt;i&gt;3</td>
</tr>
</tbody>
</table>
- **cross.name** (STRING) : the name of the cross.
- **cross.size** (INTEGER): the number of individuals used to build the genetic linkage map.

For example, inserting 5 mapping experiments leads to the following file
2.1.2 Trait Ontology Table

MetaQTL can also use a trait ontology in order to group the QTL in trait categories. The ontology representation handled by MetaQTL is based on a simple hierarchy (such as a taxonomy) where each child has a unique parent. The table which stores the trait ontology is defined by the following fields:

- **term_id** (INTEGER): the unique identifier of the term.
- **term_name** (STRING): the name of the term, i.e the trait name.
- **parent_id** (INTEGER): the identifier of the unique parent of this term (required except for the root of the ontology).
- **synonyms** (STRING): the synonyms of the trait name separated by a coma (then the synonyms must not contain any coma).
- **definition** (STRING): the definition of the trait.

For example:

<table>
<thead>
<tr>
<th>term_id</th>
<th>term_name</th>
<th>parent_id</th>
<th>synonyms</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>my_ontology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>flowering_time</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>days_to_pollen_shed</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>plant_height</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>leaf_number</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>silking_date</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**REMARK:** The trait ontology must always be rooted (in the previous example the root was my_ontology). Generally, The root is not itself a trait but the name of the ontology.

2.1.3 GLMdb

The genetic linkage map database is simply organized as a set of plain text files each corresponding to a single genetic linkage map. The link between the experiment table and the genetic map files is done by using the same stem file name than the name of the mapping experiment declared in the column **map** of the experiment table. For example the genetic linkage map related to the mapping experiments ‘exp1’ will be stored in a file named ‘exp1.txt’. Here a genetic linkage map is represented by a table with the following fields:

- **group** (STRING): the linkage group name.
- **marker** (STRING): the name of the marker.
- **position** (NUMERIC): the position of the marker on the linkage group the unit of which is declared in the experiment table.

For example, the genetic linkage map file for the mapping experiments exp1 would be
2.1.4 QTLdb

As for GLMdb the QTL database consists in as many plain text files as the number of mapping experiments described in the experiment table. Each file must respect the same naming convention as for GLMdb, i.e the stem name of the file must be the name of the corresponding mapping experiment as defined in the map field of the experiment table. Thus if a QTL detection result has been reported for the mapping experiment 'exp1' we will have a file 'exp1.txt'. Each file of QTLdb are organized as follows:

- **group**: the linkage group name.
- **qtl**: the name of the QTL.
- **position**: the most probable position of the QTL on the linkage group.
- **qtl.trait.name**: the name of the trait to which this QTL is related.
- **qtl.ci.lod.decrease**: if the CI is based on a LOD support, use this field to define the decrease of LOD which was used to build the CI.
- **qtl.rsquare**: the estimated r-square of the QTL.
- **qtl.cross.name**: the name of the cross used to carry out the QTL mapping.
- **qtl.cross.type**: the type of the cross used to carry out the QTL mapping.
- **qtl.cross.size**: the size of the cross used to carry out the QTL mapping.

2.2 MetaDB

This program is designed to reformat all the tables of the database into a set of XML files which will be used by the analysis programs.

2.2.1 Command Line Options
Chapter 2: Data Base 7

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-e, --exp</td>
<td>required</td>
<td>STRING</td>
<td>Experiment file</td>
</tr>
<tr>
<td>-o, --output</td>
<td>required</td>
<td>STRING</td>
<td>Output XML directory</td>
</tr>
<tr>
<td>-m, --mapdb</td>
<td>required</td>
<td>STRING</td>
<td>The GLMdb directory</td>
</tr>
<tr>
<td>-q, --qtldb</td>
<td>required</td>
<td>STRING</td>
<td>The QTLdb directory</td>
</tr>
<tr>
<td>-t, --tofile</td>
<td>optional</td>
<td>STRING</td>
<td>Trait Ontology file</td>
</tr>
<tr>
<td>-d, --mrkdico</td>
<td>optional</td>
<td>STRING</td>
<td>Marker dictionary file</td>
</tr>
<tr>
<td>--mrkup</td>
<td>optional</td>
<td>STRING</td>
<td>A file with the marker name to update</td>
</tr>
<tr>
<td>--mrkrm</td>
<td>optional</td>
<td>STRING</td>
<td>A file with the marker to remove</td>
</tr>
<tr>
<td>--chrm</td>
<td>optional</td>
<td>STRING</td>
<td>A file with the chromosome to remove</td>
</tr>
</tbody>
</table>

For example, suppose we have created a database which consists in the files ‘exp.txt’ (experiment table), ‘onto.txt’ (trait ontology), ‘dico.txt’ (marker dictionary), and the directories ‘glmdb/’ and ‘qtldb/’ which contain the marker map and the QTL map tables relative to the mapping experiments specified in ‘exp.txt’. We assume that all the files and directories are included into the same directory, the database directory. Then we can create the XML repository, ‘xmlmdb/’, by invoking the command (in the database directory)

```
>java org.metaqtl.main.MetaDB \
  -e exp.txt -t onto.txt -d dico.txt -m glmdb -q qtldb -o xmlmdb
```

This creates as many XML files in the ‘xmlmdb/’ directory as the number of mapping experiments. For a given mapping experiment all the information (parameters, markers, QTL, ...) are merged into a single XML file which stem name is the same than the mapping experiment name. The output directory ‘xmlmdb/’ also contains a file named ‘ontology.xml’ which represents the trait ontology table (if this last one is not valid, the file is not created). Finally, using the marker dictionary, MetaDB converts all the marker names which match a synonym in the marker dictionary to their standard name. If you want to export these XML files into another file format, See Section 5.2 [Xml2A], page 33.

For the option --mrkup, the input file format must be a table with 4 columns seperated by a tabulation as follows:

```
Exp1 Chrom1 mrk3 mrk3a  
Exp1 Chrom2 mrk4 mrk4b  
Exp2 Chrom1 mrk1 mrk1c  
...                        
```

where the first column gives the name of the mapping experiment (must be the same than in the experiment table), the second the name of the chromosome, the third one the current name of the marker to update and the last one the new name of the marker.

For the option --mrkrm, the input file is the same than the previous one except that it contains only the first three columns.

Finally, for the option --chrm, the input file is the same than the previous one except that it contains only the first two columns.

Note that these three last options have no effect on the raw data file: the rules they define are only applied to the ouput XML data base.
3 Meta Analysis

MetaQTL implements a serie of programs which can be combined to do a complete analysis. Here we give details on each program: how to use them and what they do. We classified the programs into 3 main categories which correspond to the main steps of a complete QTL meta-analysis.

3.1 Consensus map

The first step of the QTL meta-analysis is to intergate all the input genetic marker maps into a single one called the consensus marker map.

3.1.1 InfoMap

3.1.1.1 Method

Before performing the construction of the consensus map, it is important to evaluate how the input maps are connected together. For each linkage group, InfoMap displays some descriptive statistics about the marker maps and for each pair of mapping experiments the program looks for common marker sequences. A common marker sequence is a set of at least two common markers for which the order in the two linkage groups is consistent. The marker order is said to be consistent even if the sequence is completely inverted between the two linkage groups.

For example, in the above figure the number of common marker sequences is 2. The first one (in red) involved 2 markers (umc116, umc5b), which order is reversed between the two chromosome, and the second one (in blue) involved 3 markers (umc110, bn116.06, umc168).

3.1.1.2 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
-m, --mapdir   required   STRING   The directory which contains the XML files.
-o, --output   required   STRING   The output file name.
-t, --mrkth    optional   INTEGER  The threshold on the occurrence of the markers.

For example,

```
%java org.metaqtl.main.InfoMap -m xmldb -t 2 -o info.txt
```

gives information on the mapping experiments which XML files are included in the directory `xmldb` by keeping only markers which are defined in at least 2 mapping experiments.

### 3.1.1.3 Output

The output of InfoMap is a plain text file. For each linkage group, results are introduced by a '>CR' tag followed by the name of the linkage group as follows:

```
>CR 7 Connected=true

# Table of the chromosomes
#
# Chromosome  Index 1  2  3  4  5  Total
# Ribaut  1  1.0  1.0  1.0
# Lubberstedt  2  1.0  1.0  1.0  1.0  2.0
# Moreau  3  1.0  1.0  1.0  1.0  2.0  3.0
# Rebai  4  1.0  1.0  1.0  1.0  2.0  3.0  5.0  3.0
# Mechin  5  1.0  1.0  1.0  1.0  2.0  3.0  5.0  3.0
```

The term ‘Connected=true’ means that it exists a path in terms of common markers from any mapping experiment to any other mapping experiment. Otherwise, the value will be set to ‘false’. This insures that for this linkage group the consensus map of the chromosome can be built. Then comes a table which summarizes the number of markers and the average interval marker distance per mapping experiment. It is followed by the table of common markers which gives for each pair of mapping experiments the number of common markers which connects them. It can be viewed as the adjacency matrix of the graph which connects the mapping experiments according to the number of common markers they share.

```
# Table of the number of common markers
# Total number of marker M=37
# Prop of common markers p=0.1650793650793651
# Chrom  Index 1  2  3  4  5  Total
# Ribaut  1  1.0  1.0  1.0  1.0  1.0
# Lubberstedt  2  1.0  1.0  1.0  1.0  2.0  3.0  5.0  2.0  8.0
# Moreau  3  1.0  1.0  1.0  1.0  2.0  3.0  5.0  2.0  8.0
# Rebai  4  1.0  1.0  1.0  1.0  2.0  3.0  5.0  2.0  8.0
# Mechin  5  1.0  1.0  1.0  1.0  2.0  3.0  5.0  2.0  8.0
```

The two last tables are based on the common marker sequences found for each pair of mapping experiments.
In this example, the first table reveals that the mapping experiment “Moreau” and “Rebai” show marker order inconsistency since there are 2 common marker sequences between them. In the second table the proportion of common markers involved in the common marker sequences are reported. This proportion is obtained by summing the number of markers of the common sequences weighted by 1 if the order is the same, -1 otherwise, and dividing this quantity by the total number of common markers. This value lies between -1 and 1. A value of 1 indicates that all the common markers are correctly ordered between the mapping experiments meanwhile a value of -1 indicates that the common marker order is completely reversed between the two mapping experiments. For example, in the above figure the two maps share 5 common markers: 2 are involved in a common sequence which is inverted, and 3 in a common sequence in the same way. Then the proportion of markers involved in common sequences is \((3 \times 1 + 2 \times (-1))/5 = 0.2\).

### 3.1.2 ConsMap

ConsMap is dedicated to the construction of consensus marker map.

#### 3.1.2.1 Method

The method implemented in MetaQTL is based on a Weighted Least Square (WLS) strategy. Contrary to iterative projection procedure, this method makes it possible to integrate all maps in a single step. It is also possible to fix a genetic map as reference.

#### 3.1.2.2 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m,--mapdir</td>
<td>required</td>
<td>STRING</td>
<td>The directory which contains the XML files.</td>
</tr>
<tr>
<td>-o,--outstem</td>
<td>required</td>
<td>STRING</td>
<td>The output file stem.</td>
</tr>
<tr>
<td>-r,--refmap</td>
<td>optional</td>
<td>STRING</td>
<td>The XML file of the reference map.</td>
</tr>
<tr>
<td>-t,--mrkthresh</td>
<td>optional</td>
<td>INTEGER</td>
<td>The threshold on the occurrence of the markers.</td>
</tr>
<tr>
<td>-d,--dubfile</td>
<td>optional</td>
<td>STRING</td>
<td>The file containing a list of markers to ignore.</td>
</tr>
<tr>
<td>--mrkdico</td>
<td>optional</td>
<td>STRING</td>
<td>The marker dictionary.</td>
</tr>
</tbody>
</table>

For example,
Chapter 3: Meta Analysis

```
% java org.metaqtl.main.ConsMap \
>     -m xmlldb -r xmlldb/IBM.xml -o consmap
```

builds a consensus linkage map using all the maps in the directory ‘xmlldb’ fixing the map defined in ‘xmlldb/IBM.xml’ as the reference.

3.1.3 Output

The result of ConsMap consists in two files:

- `<output_stem>_map.xml`: a XML file which represents the consensus map.
- `<output_stem>_fit.txt`: a plain text file which gives for each chromosome the goodness-of-fit and the standardized residuals between the input maps and the consensus one. Each line begins with an identifier composed by 2 characters followed by its corresponding value.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>The name of the linkage group.</td>
</tr>
<tr>
<td>NM</td>
<td>The number of distinct markers positioned on the consensus linkage group.</td>
</tr>
<tr>
<td>GF</td>
<td>The goodness-of-fit of the consensus linkage group.</td>
</tr>
<tr>
<td>PV</td>
<td>The p-value associated to the goodness-of-fit.</td>
</tr>
<tr>
<td>DF</td>
<td>The number of degree of freedoms of the residual.</td>
</tr>
<tr>
<td>SR</td>
<td>The standardized residuals: first comes the name of the mapping experiment followed by the value of the residual. These values are ordered according to the order of the marker intervals in the linkage group of the mapping experiment.</td>
</tr>
</tbody>
</table>

For example, this file can look like this:

<table>
<thead>
<tr>
<th>CR</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM</td>
<td>37</td>
</tr>
<tr>
<td>GF</td>
<td>182.0738940381568</td>
</tr>
<tr>
<td>PV</td>
<td>1.0</td>
</tr>
<tr>
<td>DF</td>
<td>7</td>
</tr>
<tr>
<td>SR</td>
<td>Lubberstedt 1.6308530669014496E-13</td>
</tr>
<tr>
<td>SR</td>
<td>Lubberstedt -9.20570085506115E-14</td>
</tr>
<tr>
<td>SR</td>
<td>Lubberstedt -3.401706740772377E-14</td>
</tr>
<tr>
<td>SR</td>
<td>Lubberstedt -1.04989614734477E-13</td>
</tr>
<tr>
<td>SR</td>
<td>Lubberstedt 1.2471027908772377E-13</td>
</tr>
<tr>
<td>SR</td>
<td>Lubberstedt -2.97254335412959E-13</td>
</tr>
<tr>
<td>SR</td>
<td>Mechin -4.797069139413729E-15</td>
</tr>
<tr>
<td>SR</td>
<td>Mechin 5.484351947823543E-14</td>
</tr>
<tr>
<td>SR</td>
<td>Mechin 6.830428378396427E-15</td>
</tr>
<tr>
<td>SR</td>
<td>Mechin 0.7995364207820779</td>
</tr>
<tr>
<td>SR</td>
<td>Mechin 0.3047608429054208</td>
</tr>
<tr>
<td>SR</td>
<td>Mechin -6.98290111003849E-14</td>
</tr>
<tr>
<td>SR</td>
<td>Moreau 9.66162015886837E-15</td>
</tr>
<tr>
<td>SR</td>
<td>Moreau 10.85507243048007</td>
</tr>
<tr>
<td>SR</td>
<td>Moreau -2.1096760232982783</td>
</tr>
<tr>
<td>SR</td>
<td>Moreau -0.00221697065843051</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

3.2 QTL Projection

3.2.1 Method

QTL projection consists in positioning the QTL located on a given map (the original map) onto another one (the reference map). To illustrate the basic principle of QTL projection, let’s assume that the flanking markers of a given QTL location in the original map are also included in the reference. Then the QTL can be projected into the flanking marker interval of the reference map by using a simple homothetic rule. If the QTL have a confidence interval (CI) defined
on the original map then it is resized on the reference map according to a scaling factor which takes into account the marker interval distance variations between the original and the reference map. This factor is computed by summing, over all the common marker sequences, the ratio of the marker interval distances between the reference and the original map weighted by the probability that the QTL lies in these intervals.

3.2.2 QTLProj

QTLProj implements a dynamic algorithm in order to find the optimal context to do the projection. An optimal context consists in a pair of common marker which flanks the QTL in the original map and for which the distance estimate is consistent between the maps. Two parameters control the behaviour of the algorithm to find such a configuration: the minimal value of the ratio of the flanking marker interval distances and the minimal p-value obtained by testing the homogeneity of the flanking marker interval distances between the original and the reference map.

3.2.2.1 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m,--map</td>
<td>required</td>
<td>STRING</td>
<td>The reference map (XML format).</td>
</tr>
<tr>
<td>-q,--qtl</td>
<td>required</td>
<td>STRING</td>
<td>The directory containing the original maps (XML format).</td>
</tr>
<tr>
<td>-o,--output</td>
<td>required</td>
<td>STRING</td>
<td>The output file stem.</td>
</tr>
<tr>
<td>-r,--ratio</td>
<td>optional</td>
<td>DOUBLE</td>
<td>The minimal ratio between 0 and 1 (default is 0.5)</td>
</tr>
<tr>
<td>-p,--pval</td>
<td>optional</td>
<td>DOUBLE</td>
<td>The minimal p-value between 0 and 1 (default is 0.01).</td>
</tr>
<tr>
<td>--rmrk</td>
<td>optional</td>
<td>STRING</td>
<td>A list of marker to ignore during the projection</td>
</tr>
<tr>
<td>--rqtl</td>
<td>optional</td>
<td>STRING</td>
<td>A list of QTL to be excluded from the projection</td>
</tr>
</tbody>
</table>

For example,

```
% java org.metaqtl.main.QTLProj \
>     -m reference.xml -q xmlldb -o projection -r 0.25 -p 0.05
```

projects the QTL located onto the maps included in the directory ‘xmlldb’ on the reference map ‘reference.xml’. Only the QTL for which it is possible to find a pair of flanking markers for which the interval distance is not reduced by more than a factor of 0.25 or for which the p-value of the homogeneity test of equal distances is greater than 0.05 will be projected. If the -v option is activated, the programs will return as many WARNING outputs as the number of QTL for which the projection is not possible.

3.2.2.2 Output files

QTLProj output consists in two XML files:

- ‘<output_stem>map.xml’: This file contains both the markers and the projected QTL locations on the reference map (plus eventually the QTL previously defined on the reference).
- ‘<output_stem>qtl.xml’: This file contains only the QTL which have been projected on the reference map (plus eventually the QTL previously defined on the reference).
3.3 QTL Clustering

Here we want to address the following question: How many “real” QTL do the QTL detected in the different mapping experiments represent - one, two, three, four,... or as many as the number detected throughout the studies? The meta-analysis of QTL can be viewed as a clustering procedure. To do so, MetaQTL implements two kinds of clustering algorithm. Whatever the procedure used to perform the clustering, the QTL locations are assumed to be normally distributed around their true locations with variances which can be derived from the reported CI or r-square values. This Gaussian and unbiased approximation comes from the classical asymptotic Gaussian distribution of the maximum-likelihood estimation of the parameters.

3.3.1 ClustQTL

3.3.1.1 Method

ClustQTL implements a clustering procedure based on a Gaussian mixture model which parameter estimates are obtained by applying a EM-algorithm.

3.3.1.2 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-q,--qtlmap</td>
<td>required</td>
<td>STRING</td>
<td>The map with the QTL to clusterize (XML format).</td>
</tr>
<tr>
<td>-o,--output</td>
<td>required</td>
<td>STRING</td>
<td>The output file stem.</td>
</tr>
<tr>
<td>-t,--tonto</td>
<td>optional</td>
<td>STRING</td>
<td>The trait ontology.</td>
</tr>
<tr>
<td>-k,--kmax</td>
<td>optional</td>
<td>INTEGER</td>
<td>The maximal number of clusters.</td>
</tr>
<tr>
<td>-c,--chr</td>
<td>optional</td>
<td>STRING</td>
<td>The name of the chromosome on which to perform the meta-analysis.</td>
</tr>
<tr>
<td>--cimode</td>
<td>optional</td>
<td>INTEGER</td>
<td>The CI computation mode.</td>
</tr>
<tr>
<td>--cimiss</td>
<td>optional</td>
<td>INTEGER</td>
<td>The imputation mode for missing CI.</td>
</tr>
<tr>
<td>--emrs</td>
<td>optional</td>
<td>INTEGER</td>
<td>the number of random starting points for the EM algorithm</td>
</tr>
<tr>
<td>--emeps</td>
<td>optional</td>
<td>DOUBLE</td>
<td>the convergence threshold for the EM algorithm</td>
</tr>
</tbody>
</table>

The option --cimode controls the mode of computation of the variances of the QTL. There are four modes:

- 1: the variances are computed according to the available information: from the CI if defined, otherwise from the r-square value.
- 2: the variances are only computed for the QTL locations for which a CI is reported.
- 3: the variances are computed using the r-square values.
- 4: the variances are obtained by taking the maximum value between the variance derived from the CI and/or from the r-square.

The --cimiss defines how to deal with QTL for which no variance can be computed. There are two possibilities:

- 1: the mean of the estimated variances is attributed to QTL with no variance defined.
- 2: the QTL with no variance defined are ignored.

3.3.1.3 Output

The output of ClustQTL is divided into 3 plain text files:
• `<output_stem>_res.txt`': this file contains a summary of the results of the clustering for each linkage group. The file is organized as follows

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>The name of the linkage group.</td>
</tr>
<tr>
<td>TR</td>
<td>The trait name following by the number of related QTL on the chromosome.</td>
</tr>
<tr>
<td>QT</td>
<td>A QTL with its identifier, its name, its position on the chromosome and its estimated standard deviation.</td>
</tr>
<tr>
<td>CL</td>
<td>Indicates the beginning of a clustering result. It is followed by the number of QTL involved in the clustering, the number of clusters, the log-likelihood and the complete log-likelihood of this clustering.</td>
</tr>
<tr>
<td>CC</td>
<td>The name of a model choice criterion followed by its value.</td>
</tr>
<tr>
<td>CP</td>
<td>This tag recovers four kinds of entry:</td>
</tr>
<tr>
<td></td>
<td>• PI : the weights of each cluster (i.e the mixing proportions in the mixture model).</td>
</tr>
<tr>
<td></td>
<td>• MU : the QTL location estimates (i.e the centroids of each cluster).</td>
</tr>
<tr>
<td></td>
<td>• CI : the 95% confidence intervals of the QTL location estimates.</td>
</tr>
<tr>
<td></td>
<td>• Z : the QTL cluster membership probabilities: first comes the identifier of the QTL and then the probabilities.</td>
</tr>
</tbody>
</table>

For example,

```
CR 3
TR FloweringTime 10
QT 0 Lubberstedt_1997_HT_7 106.35 7.9
QT 1 Cardinal_2001_HT_5 90.76 7.91
QT 2 qplht107 150.02 5.28
QT 3 Cardinal_2001_HT_6 51.03 7.26
QT 4 qplht106 107.46 1.3
QT 5 Groh_1998_HT_2 61.03 17.15
QT 6 Bohn_1996_HT_2 66.81 4.26
QT 7 Lubberstedt_1997_HT_6 80.67 3.04
QT 8 qplht105 75.45 4.61
QT 9 Blanc_SDflofch3 148.15 15.05
QT 10 Blanc_FXflofch3 135.27 21.68
CL 10 2 -462.46 -445.55
CC AIC 930.91
CC BIC 935.11
CP MU 88.87 148.91
CP PI 0.73 0.27
CP CI 3.82 3.76
CP Z 0 1 0
CP Z 1 1 0
CP Z 2 0 1
CP Z 3 1 0
CP Z 4 1 0
CP Z 5 1 0
CP Z 6 1 0
CP Z 7 1 0
CP Z 8 1 0
CP Z 9 0 1
CP Z 10 0.1 0.9
...
```

• `<output_stem>_crit.txt`': this file summarizes the values of the model choice criteria. For example,
The first column indicates the name of the chromosome, the second one the name of the trait, the third the number of clusters, the fourth the name of the criterion and the three last ones give respectively the criterion value, its rescaled value and the “weight of evidence”.

- `<output_stem>_model.txt`: This file gives the optimal number of QTL location according to the model choice criteria. The file is organized as a table with 4 columns. The first column indicates the name of the criterion, the second one the name of the chromosome, the third one the name of the trait and the last one the optimal number of QTL. For example,

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Chromosome</th>
<th>Trait</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>3</td>
<td>FT</td>
<td>2</td>
</tr>
<tr>
<td>AIC</td>
<td>10</td>
<td>FT</td>
<td>4</td>
</tr>
<tr>
<td>AIC</td>
<td>5</td>
<td>FT</td>
<td>4</td>
</tr>
<tr>
<td>AIC</td>
<td>7</td>
<td>FT</td>
<td>5</td>
</tr>
<tr>
<td>AIC</td>
<td>2</td>
<td>FT</td>
<td>4</td>
</tr>
<tr>
<td>AIC</td>
<td>9</td>
<td>FT</td>
<td>3</td>
</tr>
<tr>
<td>AIC</td>
<td>4</td>
<td>FT</td>
<td>3</td>
</tr>
<tr>
<td>AIC</td>
<td>8</td>
<td>FT</td>
<td>5</td>
</tr>
<tr>
<td>AIC</td>
<td>6</td>
<td>FT</td>
<td>3</td>
</tr>
<tr>
<td>AIC</td>
<td>1</td>
<td>FT</td>
<td>5</td>
</tr>
<tr>
<td>BIC</td>
<td>3</td>
<td>FT</td>
<td>2</td>
</tr>
<tr>
<td>BIC</td>
<td>10</td>
<td>FT</td>
<td>3</td>
</tr>
<tr>
<td>BIC</td>
<td>5</td>
<td>FT</td>
<td>4</td>
</tr>
<tr>
<td>BIC</td>
<td>7</td>
<td>FT</td>
<td>5</td>
</tr>
<tr>
<td>BIC</td>
<td>2</td>
<td>FT</td>
<td>4</td>
</tr>
<tr>
<td>BIC</td>
<td>9</td>
<td>FT</td>
<td>3</td>
</tr>
<tr>
<td>BIC</td>
<td>4</td>
<td>FT</td>
<td>3</td>
</tr>
<tr>
<td>BIC</td>
<td>8</td>
<td>FT</td>
<td>5</td>
</tr>
<tr>
<td>BIC</td>
<td>6</td>
<td>FT</td>
<td>3</td>
</tr>
<tr>
<td>BIC</td>
<td>1</td>
<td>FT</td>
<td>5</td>
</tr>
</tbody>
</table>

### 3.3.2 QTLTree

#### 3.3.2.1 Method

Another way to clusterize the observed QTL is to use standard hierarchical clustering procedures. **QTLTree** implements two kinds of hierarchical clustering algorithm:

- Average group linkage: once cluster of QTL are formed, they are represented by their mean values, that is, their mean location, and inter-cluster distance is defined as the distance
between two mean values. In the average group linkage method, the two clusters Q1 and Q2 are merged such that, after merging, the average pairwise distance within the newly formed cluster, is minimum. Suppose we label the new cluster formed by merging clusters Q1 and Q2, as Q3. Then D(Q1,Q2), the distance between clusters Q1 and Q2 is computed as D(Q1,Q2) = Average \( \{d(QTL_i,QTL_j) : \) where QTL i and j are in cluster Q3, the cluster formed by merging clusters Q1 and Q2. At each stage of hierarchical clustering, the clusters Q1 and Q2, for which D(Q1,Q2) is minimum, are merged. The distance used here is the mahalanobis distance.

- Ward’s method: Ward (1963) proposed a clustering procedure seeking to form the partitions Qn, Qn-1,........,Q1 in a manner that minimizes the loss of information associated with each grouping, and to quantify that loss in a form that is readily interpretable. At each step in the analysis, the union of every possible cluster pair is considered and the two clusters whose fusion results in minimum increase in ‘information loss’ are combined. Usually, information loss is defined in terms of a error sum-of-squares like criterion, called the target function. Here the target function is defined as the loglikelihood of being one “actual” QTL underlying the distribution of the observed QTL locations within the cluster.

### 3.3.2.2 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-q, --qtlmap</td>
<td>required</td>
<td>STRING</td>
<td>The map with the QTL to clusterize (XML format).</td>
</tr>
<tr>
<td>-o, --output</td>
<td>required</td>
<td>STRING</td>
<td>The output file.</td>
</tr>
<tr>
<td>-m, --mode</td>
<td>optional</td>
<td>INTEGER</td>
<td>The clustering mode (default is 2).</td>
</tr>
<tr>
<td>-t, --tonto</td>
<td>optional</td>
<td>STRING</td>
<td>The trait ontology.</td>
</tr>
<tr>
<td>--cimode</td>
<td>optional</td>
<td>INTEGER</td>
<td>The variance computation mode.</td>
</tr>
<tr>
<td>--cimiss</td>
<td>optional</td>
<td>INTEGER</td>
<td>The imputation mode for missing variances.</td>
</tr>
</tbody>
</table>

The option -m (or --mode) allows user to switch between the two possible clustering algorithms:

- 1 : Average group linkage.
- 2 : Ward’s metod.

The options --cimode and --cimiss works as for QTLClust.

### 3.3.2.3 Output

The output of QTLTree consists in one plain text file. The file is organized as follows:

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>The name of the linkage group.</td>
</tr>
<tr>
<td>TR</td>
<td>The name of the trait followed by the number of related QTL on the chromosome.</td>
</tr>
<tr>
<td>QT</td>
<td>A QTL involved in the clustering with its identifier, its name, its most probable position on the chromosome and its estimated standard deviation.</td>
</tr>
<tr>
<td>HC</td>
<td>The tree obtained by the clustering algorithm in Newick’s format.</td>
</tr>
</tbody>
</table>

For example,
<table>
<thead>
<tr>
<th>QT</th>
<th>Study Reference</th>
<th>QT</th>
<th>Study Reference</th>
<th>QT</th>
<th>Study Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ribaut_1996_DPS_6</td>
<td>1</td>
<td>Bohn_2000_DPS_12</td>
<td>2</td>
<td>Poupard_2001_DPS_13</td>
</tr>
<tr>
<td></td>
<td>8.02 7</td>
<td></td>
<td>51.68 4.87</td>
<td></td>
<td>40.02 3.65</td>
</tr>
<tr>
<td>3</td>
<td>Mechin_2001_HT_5</td>
<td>4</td>
<td>Lubberstedt_1997_HT_20</td>
<td>5</td>
<td>Groh_1998_HT_7</td>
</tr>
<tr>
<td></td>
<td>71 4.26</td>
<td></td>
<td>59.14 3.65</td>
<td>100.01 12.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>qplht127 52.39 5.25</td>
<td>7</td>
<td>Rebai_1997_SD_5</td>
<td>8</td>
<td>Blanc_DFflofch10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>66.51 5.17</td>
<td>61.57 2.55</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Rebai_1997_SD_25</td>
<td>10</td>
<td>Rebai_1997_SD_19</td>
<td>11</td>
<td>Blanc_FXflofch10</td>
</tr>
<tr>
<td></td>
<td>54.5 12.46</td>
<td></td>
<td>62.14 10.64</td>
<td>58.17 3.57</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ribaut_1996_SD_6</td>
<td>13</td>
<td>Rebai_1997_SD_33</td>
<td>14</td>
<td>Rebai_1997_SD_12</td>
</tr>
<tr>
<td></td>
<td>6.78 10.83</td>
<td></td>
<td>59.96 9.73</td>
<td>49.04 14.59</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Blanc_SFflofch10</td>
<td></td>
<td></td>
<td>53.13 3.32</td>
<td></td>
</tr>
</tbody>
</table>
|    |                      |    | HC ((0:0.16,12:0.16):87.85, (((((1:0.24,(6:0.06,15:0.06):0.11,9:0.11):0.24):0.4,14:0.4) :7.43, (((4:0.04,13:0.04):0.16,11:0.16):1.11,(8:0.01,10:0.01):1.11):7.43):15.64, HC (3:2.43,7:2.43):15.64):24.56,5:24.56):40.9,2:40.9):87.85);
4 Visualization

MetaQTL provides some utilities that read the input or the output of the analysis programs and reformat it as images. These images can then be visualized using standard image viewer or editor.

4.1 MapView

MapView is designed to draw markers and QTL for one or several linkage groups, depending on drawing parameters.

4.1.1 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m, --mapfile</td>
<td>required</td>
<td>STRING</td>
<td>The XML file for the genetic map.</td>
</tr>
<tr>
<td>-c, --chrom</td>
<td>required</td>
<td>STRING</td>
<td>The name of the chromosome(s) to display.</td>
</tr>
<tr>
<td>-o, --output</td>
<td>required</td>
<td>STRING</td>
<td>The output file stem.</td>
</tr>
<tr>
<td>-q, --withqtl</td>
<td>optional</td>
<td>INTEGER</td>
<td>Draw also QTL.</td>
</tr>
<tr>
<td>-t, --onto</td>
<td>optional</td>
<td>STRING</td>
<td>The XML file for the trait ontology</td>
</tr>
<tr>
<td>-p, --parfile</td>
<td>optional</td>
<td>STRING</td>
<td>The drawing parameter file.</td>
</tr>
<tr>
<td>--qmode</td>
<td>optional</td>
<td>INTEGER</td>
<td>QTL representation mode (0=bar, 1=arrow)</td>
</tr>
<tr>
<td>--tree</td>
<td>optional</td>
<td>STRING</td>
<td>a QTL tree (obtained with QTLTree);</td>
</tr>
<tr>
<td>--img</td>
<td>optional</td>
<td>STRING</td>
<td>The format of the image (use --help for possible values).</td>
</tr>
</tbody>
</table>

For example,

```
%java org.metaqtl.main.MapView \
>   -c 1,2 -m map.xml -q -o figure --img jpeg
```

draws the chromosome 1 and 2 with both markers and QTL of the given map 'map.xml' and outputs the result in 'figure.jpeg'. This also creates a file named 'figure.par' which gives the values of the drawing parameters. This file can be modified and reused to create another image by using the -p or --par option

```
%java org.metaqtl.main.MapView \
>   -c 1,2 -m map.xml -q -o figure -p figure.par --img jpeg
```

The next section gives more details on how to deal with the drawing parameters.

4.1.2 Drawing Parameters

Several parameters allow user to put in form the figure. The next figure illustrates the role of each parameter.
The parameter file is organized as follows:

```
# # Graphical Parameters
# # CHROMOSOME
# CHROM_DISTANCE_SCALE=5.0
# CHROM_FLANKING_CEX=0.1
# CHROM_NAME_FONT=Utopia Regular:BOLD:12
# CHROM_NAME_HSPACE=20.0
# CHROM_TICK_WIDTH_1=10.0
# CHROM_TICK_WIDTH_2=20.0
# CHROM_TICK_WIDTH_3=10.0
# CHROM_WIDTH=30.0
# MAKER_NAME_VSPACE=1.0
# MARKER_NAME_FONT=Utopia Regular:PLAIN:10
# MARKER_POSITION_FONT=Utopia Regular:PLAIN:10
# # QTL
# QTL_CI_WIDTH=10.0
# QTL_CI_WIDTH_CEX=0.25
# QTL_HSPACE=10.0
# QTL_NAME_FONT=Courier:PLAIN:10
# QTL_NAME_VSPACE_CEX=1.0
# QTL_POS_HEIGHT_CEX=0.01
# QTL_POS_WIDTH_CEX=1.5
# QTL_VSPACE=20.0
# # LEGEND
# LEGEND_BOX_CEX=0.5
# LEGEND_FONT=Verdana:PLAIN:10
# LEGEND_HSPACE=5.0
# LEGEND_PART_HEIGHT=20.0
# LEGEND_PART_WIDTH=50.0
# LEGEND_SCALE_UNIT=5
# # OTHER
# BACKGROUND_COLOR=ffffff
# LAYER_HSPACE=20.0
# LAYER_VSPACE=20.0
# WITH_CHROM_NAME=true
# WITH_LEGEND=true
# WITH_MAP_NAME=true
# WITH_MARKER_NAME=true
# WITH_QTL_NAME=true
# WITH_MARKER_POSITION=true
```

A line which begins by the character ‘#’ is ignored by the program. Each drawing parameter is specified by its own name directly followed by a sign ‘=' and its value. For the parameters which specify a color (those which end by ‘_COLOR’) the value must be a RGB code in hexadecimal (e.g. red is ff0000, green 00ff00, blue 0000ff, white ffff00, black 000000, and etc...). For the parameters which specify a font (those which end by ‘_FONT’) the value must be a string composed by 3 tokens separated by a ‘:’. The first token gives the name of the font, the second one the style of the font (among ‘PLAIN’, ‘BOLD’ and ‘ITALIC’) and the last one indicates the size of the font. The parameter file generated by MapView ends by a list of the available fonts on your system. If you do not use a font name in this list, then MapView will use the default font. The parameters which start by ‘WITH_’ allow the user to specify if the corresponding elements of the figure must
be drawn. The possible values for these parameters are either ‘true’ (draw) and ‘false’ (not to draw). For example if you set ‘WITH_MARKER_POSITION=false’ the marker positions along the chromosome won’t be drawn. When the QTL are added to the figure (option -q with MapView) they are colored according to their trait group. The colors used to display the QTL are also specified in the parameter file generated by the program. For example, let’s assume that the QTL belongs to 3 trait groups. The parameter file will then contain the following lines:

```
QTL_COLOR_1=ffff00
QTL_COLOR_2=00ff00
QTL_COLOR_3=0000ff
```

where QTL_COLOR_i is the color of the group i. You can use these lines to modify the default colors.

### 4.2 MMapView

MMapView is designed to draw markers and QTL for one linkage group for several genetic maps. It helps to visualize common markers between maps but also to display marker interval distance heterogeneities.

#### 4.2.1 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m, --mapdir</td>
<td>required</td>
<td>STRING</td>
<td>The XML file/directory for the genetic map(s).</td>
</tr>
<tr>
<td>-c, --chrom</td>
<td>required</td>
<td>STRING</td>
<td>The name of the chromosome to display.</td>
</tr>
<tr>
<td>-o, --output</td>
<td>required</td>
<td>STRING</td>
<td>The output file stem.</td>
</tr>
<tr>
<td>-r, --refmap</td>
<td>optional</td>
<td>STRING</td>
<td>The XML file for the reference map.</td>
</tr>
<tr>
<td>-q, --withqtl</td>
<td>optional</td>
<td>INTEGER</td>
<td>The threshold on the occurrence of the markers.</td>
</tr>
<tr>
<td>-t, --tonto</td>
<td>optional</td>
<td>STRING</td>
<td>The XML file for the trait ontology</td>
</tr>
<tr>
<td>--htest</td>
<td>optional</td>
<td>BOOLEAN</td>
<td>Test distance homogeneity between the maps and the reference (only with -r).</td>
</tr>
<tr>
<td>--hth</td>
<td>optional</td>
<td>DOUBLE</td>
<td>The threshold of the p-value of the homogeneity test between the maps and the reference (only with -r and -h). The value must be between [0,1[. A value of 0 or 1 codes for a gradient view.</td>
</tr>
<tr>
<td>--mrkt</td>
<td>optional</td>
<td>INTEGER</td>
<td>Threshold on the occurrence of the markers.</td>
</tr>
<tr>
<td>-p, --parfile</td>
<td>optional</td>
<td>STRING</td>
<td>The drawing parameter file.</td>
</tr>
<tr>
<td>--img</td>
<td>optional</td>
<td>STRING</td>
<td>The format of the image (use -help for possible values).</td>
</tr>
</tbody>
</table>

Suppose we have a set of genetic maps in XML format in the directory ‘xml’ and that all the maps have a chromosome called 1. Then we can use MMapView to display all the chromosomes in a single figure as follows:

```
%java org.metaqtl.main.MMapView \
> -c 1 -m xml -o figure
```
This dumps the image into a file ‘figure_1.jpeg’ and the parameter file into ‘figure_1.par’. We can also represent the same chromosomes but with only the markers which have observed at least in two distinct chromosomes by using the option --mrkt:

```
%java org.metaqtl.main.MMapView \
> -c 1 -m xml -o figure --mrkt 2
```

Now, suppose we want to draw the same chromosomes but also to represent the eventual interval marker distance heterogeneities relatively to a reference chromosome defined in file ‘reference.xml’. Then we use the command,

```
%java org.metaqtl.main.MMapView \
> -c 1 -m xml -r reference.xml --htest -o figure
```

### 4.2.2 Drawing parameters

MMapView use the same drawing parameters than MapView plus some extra parameters. If you want to display common marker links between adjacent chromosomes set ‘WITH_COMMON_
MARKER’ to ‘true’. The width of the lines which connect the common markers can be modified by using the parameter ‘COMMON_STROKE_WIDTH’. This is illustrated in the next figure.

The link between common markers can also be painted depending on the way of the common sequences in which they are involved. For example, in the above figure the common markers which are involved in common sequence correctly ordered between the two chromosomes have their links painted in blue, otherwise their links are painted in red. Note that one marker is not involved in a common sequence and its link is painted in gray. These colors can be changed by using the parameters ‘SINGLE_COMMON_COLOR’, ‘POS_COMMON_COLOR’ and ‘NEG_COMMON_COLOR’. For example, to create the previous figure we added the following lines to the parameter file:

```yaml
# DRAW COMMON MARKER LINKS
WITH_COMMON_MARKER=true
COMMON_STROKE_WIDTH=2.0
SINGLE_COMMON_COLOR=808080
POS_COMMON_COLOR=0000ff
NEG_COMMON_COLOR=ff0000
```
When `MMapView` is used to visualize the test of homogeneity between a reference chromosome and several other chromosomes, you can parametrize both the number of bin colors to represent the probabilities and the type of gradient. For example, to create the following figure we added the extra parameters:

```bash
# PROBABILITY GRADIENT
# PROBA_BIN=20
# PROBA_FROM_COLOR=ffffff
# PROBA_TO_COLOR=ff0000
```
This means that the interval between 0 and 1 is divided into 20 intervals and the gradient starts in white (ffffff) and ends in red (ff0000). Note that the probability gradient is represented into the legend box.

Finally the chromosomes displayed in the figure can be aligned either relatively to the first marker of each chromosome, `CHROM_ALIGN_MODE=1`, or relatively to the first common marker between the first chromosome (the left one) and the other ones, `CHROM_ALIGN_MODE=0`.

### 4.3 MQTLView

MQTLView is designed to depict the result of the QTL clustering for one or several chromosomes on a given map.

#### 4.3.1 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m, --map</td>
<td>required</td>
<td>STRING</td>
<td>The XML file for the genetic map.</td>
</tr>
<tr>
<td>-c, --chrom</td>
<td>required</td>
<td>STRING</td>
<td>The name of the chromosome (or a list separated by comma) to display.</td>
</tr>
</tbody>
</table>
MQTLView provides several ways to represent the results of the QTL clustering depending on the algorithm used to perform it. Suppose we have first done a clustering using QTLClust. See Section 3.3 [QTL Clustering], page 13, which produced the result file ‘clust_res.txt’. From the output file ‘clust_model.txt’ generated by QTLClust we have derived the file ‘clust_best.txt’ which gives for a given trait the best clustering model for each chromosome (according to a given model choice criterion):

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Trait</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>FT</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>FT</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FT</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>FT</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>FT</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>FT</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>FT</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>FT</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>FT</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>FT</td>
<td>2</td>
</tr>
</tbody>
</table>

Then, we can run MQTLView to visualize the result, for example on chromosome 8 and 9 together, by invoking the command

```
%java org.metaqtl.main.MQTLView \
>   -c 8,9 -m map.xml -r clust_res.txt -b clust_best.txt -o figure --img jpeg
```
By default the figure is created with the mode `--mode 1` which leads to something like that

Now, if you set the option `--mode` to ‘0’, i.e.

```bash
%java org.metaqtl.main.MQTLView \
> -c 8,9 -m map.xml -r clust_res.txt -b clust_best.txt -o figure --img jpeg --mode 0
```
you will obtain the following representation

where the first bar which follows the name of the QTL corresponds to the relative CI of
the QTL (i.e. that the more the bar is filled, the larger the CI is). The second bar gives the
membership probabilities of the QTL according to the meta-QTL model.

If the clustering have been done via QTL Tree, the result file obtained ‘tree.txt’ can be
passed to MQTLView as follows,

```
%java org.metaqtl.main.MQTLView \
> -c 3 -m map.xml -t tree.txt -o figure --img jpeg
```
In this case **MQTLView** draws the tree obtained by the hierarchical clustering procedure as illustrated in the next figure.

Finally the results from **QTLClust** and **QTLTree** can be visualized together as shown below.
%java org.metaqtl.main.MQTLView \\
>   -c 3 -m map.xml -r clust_res.txt -b clust_best.txt -t tree.txt -o figure --img jpeg
5 Utilities

MetaQTL provides some other programs to deal with file formatting or to extract useful information from the result files.

5.1 A2Xml

A2Xml is dedicated to convert plain text files into XML files compliant with the analysis programs of MetaQTL.

5.1.1 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-i, --ifile</td>
<td>required</td>
<td>STRING</td>
<td>The file to convert in XML.</td>
</tr>
<tr>
<td>-x, --xmlfile</td>
<td>required</td>
<td>STRING</td>
<td>The output XML file.</td>
</tr>
<tr>
<td>-t, --type</td>
<td>required</td>
<td>STRING</td>
<td>The type of the input file.</td>
</tr>
<tr>
<td>-f, --format</td>
<td>optional</td>
<td>STRING</td>
<td>The format of the input file.</td>
</tr>
</tbody>
</table>

Presently, the command --type have two possible values:

- map: the input file is a marker and/or QTL map.
- onto: the input file is an ontology.

```javascript
%java org.metatqtl.main.A2Xml \\
> -i map.txt -x map.xml -t map -f chart
```

The command -f, --format allows users to convert into XML different input file formats. This option works only when -t, --type is set to map. In this case 3 different input file formats can be used:

- tab: the map is in tabulated format as for the GLMdb tables See Section 2.1.3 [GLMdb], page 5.
- mch: the map is formatted like a MapChart (Voorrips 2002) input file.
- mmk: the map is formatted like a MapMaker (Lander 1987) output.

For example, suppose we have a map file ‘map.txt’ in tabulated format as follows,

```text
<table>
<thead>
<tr>
<th>group</th>
<th>marker</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>umc11</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>gsy27</td>
<td>18.0</td>
</tr>
<tr>
<td>1</td>
<td>umc67</td>
<td>54.0</td>
</tr>
<tr>
<td>1</td>
<td>umc58</td>
<td>75.0</td>
</tr>
<tr>
<td>1</td>
<td>umc53a</td>
<td>115.0</td>
</tr>
<tr>
<td>1</td>
<td>umc66b</td>
<td>140.0</td>
</tr>
<tr>
<td>1</td>
<td>gsy56</td>
<td>153.0</td>
</tr>
<tr>
<td>1</td>
<td>umc161</td>
<td>168.0</td>
</tr>
<tr>
<td>1</td>
<td>umc64</td>
<td>189.0</td>
</tr>
<tr>
<td>1</td>
<td>bnl16.32</td>
<td>198.0</td>
</tr>
</tbody>
</table>
```

Then we can convert it into a XML file using the command

```javascript
%java org.metatqtl.main.A2Xml \\
> -i map.txt -x map.xml -t map -f tab
```

This creates a file named ‘map.xml’ which looks like this
The XML file will be the same if instead using a tabulated format we have used a MapChart format as input:

```
<genome-map name="">
    <linkage-group name="1">
        <locus name="umc83a" type="M" position="115.0"/>
        <locus name="bnl6.32" type="M" position="198.0"/>
        <locus name="gsy27" type="M" position="18.0"/>
        <locus name="umc58" type="M" position="75.0"/>
        <locus name="umc161" type="M" position="168.0"/>
        <locus name="umc66b" type="M" position="140.0"/>
        <locus name="umc11" type="M" position="0.0"/>
        <locus name="gsy56" type="M" position="153.0"/>
        <locus name="umc67" type="M" position="54.0"/>
        <locus name="umc84" type="M" position="189.0"/>
    </linkage-group>
</genome-map>
```

```
The XML file will be the same if instead using a tabulated format we have used a MapChart format as input

```
%java org.metatqtl.main.A2Xml \
>   -i map.txt -x map.xml -t map -f chart
```

or if we have used a MapMaker like format:

```
### map map

<table>
<thead>
<tr>
<th>Markers</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>umc11</td>
<td>18 cM</td>
</tr>
<tr>
<td>gsy27</td>
<td>36 cM</td>
</tr>
<tr>
<td>umc67</td>
<td>21 cM</td>
</tr>
<tr>
<td>umc58</td>
<td>40 cM</td>
</tr>
<tr>
<td>umc83a</td>
<td>25 cM</td>
</tr>
<tr>
<td>umc66b</td>
<td>13 cM</td>
</tr>
<tr>
<td>gsy56</td>
<td>15 cM</td>
</tr>
<tr>
<td>umc161</td>
<td>21 cM</td>
</tr>
<tr>
<td>umc84</td>
<td>9 cM</td>
</tr>
<tr>
<td>bn61.32</td>
<td>----------</td>
</tr>
</tbody>
</table>

198 cM 10 markers log-likelihood=
```

and the command:

```
%java org.metatqtl.main.A2Xml \
>   -i map.txt -x map.xml -t map -f mm
```
5.2 Xml2A

Xml2A does exactly the reverse job of A2Xml: it takes as input a XML file and convert it into a plain text output file according to the format specified by the user.

5.2.1 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-o, --outfile</td>
<td>required</td>
<td>STRING</td>
<td>The output file.</td>
</tr>
<tr>
<td>-x, --xmlfile</td>
<td>required</td>
<td>STRING</td>
<td>The input XML file.</td>
</tr>
<tr>
<td>-t, --type</td>
<td>required</td>
<td>STRING</td>
<td>The type of the input file.</td>
</tr>
<tr>
<td>-f, --format</td>
<td>optional</td>
<td>STRING</td>
<td>The format of the input file.</td>
</tr>
</tbody>
</table>

5.3 QTLClustInfo

When a QTL clustering has been done using QTLClust See Section 3.3 [QTL Clustering], page 13, the result can be formatted using QTLClustInfo. This program allows user to get for a given trait, a given chromosome and a given clustering model, tables in which the results are summarized. QTLClustInfo computes also extra statistics as mahalanobis distances between the QTL of the clustering model, the unconditional confidence intervals (UCI) of these QTL and the predicted values of the observed QTL according to the clustering model.

5.3.1 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-o, --output</td>
<td>required</td>
<td>STRING</td>
<td>The output file</td>
</tr>
<tr>
<td>-c, --chr</td>
<td>required</td>
<td>STRING</td>
<td>The name of the chromosome.</td>
</tr>
<tr>
<td>-t, --trait</td>
<td>required</td>
<td>STRING</td>
<td>The name of the trait.</td>
</tr>
<tr>
<td>-r, --clust</td>
<td>required</td>
<td>STRING</td>
<td>The clustering result file.</td>
</tr>
<tr>
<td>-b, --best</td>
<td>required</td>
<td>INTEGER</td>
<td>The number of QTL for the best model.</td>
</tr>
<tr>
<td>--kmin</td>
<td>required</td>
<td>INTEGER</td>
<td>The minimal value to compute the UCI.</td>
</tr>
<tr>
<td>--kmax</td>
<td>required</td>
<td>INTEGER</td>
<td>The maximal value to compute the UCI.</td>
</tr>
</tbody>
</table>

For example, we focus on the chromosome ‘8’ for the trait called ‘FT’ for which we have previously performed a QTL clustering via QTLClust. We want to display the result of the clustering for the best model supposed to be the model with 5 QTL. We also want to compute the UCI by averaging over the clustering models from 1 QTL to 10 QTL. Thus we use the command

```java
%java org.metatqtl.main.QTLClustInfo \
>  -c 8 -t FT -r clust_res.txt -b 5 --kmin 1 --kmax 10 -o table.txt
```

The result of this command is dumped into the file ‘table.txt’ which looks like this
Chapter 5: Utilities

5.4 QTLModel

Once the best clustering models have been identified, `QTLModel` can be used to format the clustering results into a single XML file where both the markers and the best QTL positions are given. This file can then be re-formatted using `Xml2A`.

5.4.1 Command Line Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m, --map</td>
<td>required</td>
<td>STRING</td>
<td>The XML map name.</td>
</tr>
</tbody>
</table>
-r, --clust  required  STRING  The clustering result file.
-b, --best  required  STRING  The best clustering file.
-o, --outfile  required  STRING  The output file.

5.5 References

Chapter 6: Tutorial

6 Tutorial

6.1 Tutorial Introduction

The input files of the tutorial can be downloaded from the MetaQTL home page. In the following sections we assume that you have correctly installed the MetaQTL jar archive and that you unzip the tutorial archive into the directory ‘data’ into the current directory. Thus, in the ‘data’ directory there are the following files:

- experiments.csv: the mapping experiment table
- trait_ontology.csv: the trait ontology table
- marker_dictionary.csv: the marker dictionary table
- genetic-map: a folder which contains the raw genetic maps of the mapping experiments
- qtl-map: a folder which contains the result of the QTL detection for each mapping experiment
- ref-map: a folder which contains the reference map Genetic_2005 from MaizeGDB

6.2 Step 1 - Creating the XML Database

To create the XML database from the raw database stored into the folder ‘data’, use the command MetaDB as follows:

```
$java org.metaqtl.main.MetaDB -e data/experiments.csv -m data/genetic-map \
   -q data/qtl-map -t data/trait_ontology.csv \
   -d data/marker_dictionary.csv -o xml
```

Note that the command is run into the current directory (not in the directory ‘data’) and that the output XML database is created into the directory ‘xml’ (it will be created by the program).

Now, if we have a look to ‘xml’ we can see 19 xml files, 18 summarizing the information of the 18 input mapping experiments and one file ‘ontology.xml’ which gives the XML representation of the input trait ontology. Then, we will no longer use the file in the folder ‘data’: only the XML files in ‘xml’ must be used to carry out further studies with MetaQTL.

6.3 Step 2 - Building the consensus map

For clarity, and to avoid to put all the output files into the current directory, create a directory called ‘meta-map’ into which files related to the consensus map construction will be stored.

6.3.1 Checking chromosome connection and marker order consistency

Before creating the consensus map using the program ConsMap, it is important to check if the input maps are consistent between them. Consistency means here that: i) it must exist a path of common markers which connects the same chromosomes in the different input maps, ii) the marker order must be globally conserved between input maps which share more than 1 common marker.

To get a first diagnostic of the nature of the marker connection between input maps run the command InfoMap as follows:

```
$java org.metaqtl.main.InfoMap -m -o meta-map/infomap -t 2
```

Note that we set the option -t to 2, in order to discard the markers which are not common between maps. Then go into the directory ‘meta-map’. There are now two files:
infomap_cmp.txt: this file gives chromosome by chromosome the nature of the marker connection between input maps

infomap_mrk.txt: this file gives chromosome by chromosome the occurrence of the common markers between input maps.

Let’s focus on the chromosome 1. If we look at the file ‘infomap_cmp.txt’ we get:

>CR 1 Connected=true
#
# Table of the chromosomes
#
1 Barriere_2005 3 71.4333333333333
2 Blanc_2003 11 20.563663663663666
3 Bohn_1996 10 16.9
4 Bohn_2000 12 25.166666666666597
5 Cardinal_2001 12 18.908333333333342
6 Charcosset_unpub 11 23.181818181818194
7 Groh_1998 13 17.415384615384614
8 Lubberstedt_1997 6 44.666666666666764
9 Mechin_2001 20 12.900000000000006
10 Moreau_1998 8 24.74999999999999
11 Pioneer_1995 9 30.45555555555556
12 Poupard_2001 26 10.6000000000000025
13 Rebai_1997 18 15.833333333333364
14 Ribaut_1996 11 24.18181818181821

The fact that the attribute Connected is equal to true means that it exists a path between common markers which connects all the chromosome together (in other words, a consensus chromosome one can be built using ConsMap). The follows the average marker interval distance in the 14 input mapping experiments - not 18 because for 4 of them there is no information about chromosome 1.

Now, have a look to the table called "Table of the number of common marker sequences" below:

<table>
<thead>
<tr>
<th>Chrom</th>
<th>Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barriere_2005</td>
<td>1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Blanc_2003</td>
<td>2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Bohn_1996</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>Bohn_2000</td>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>Cardinal_2001</td>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>Charcosset_unpub</td>
<td>6</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Groh_1998</td>
<td>7</td>
<td>1.0</td>
</tr>
<tr>
<td>Lubberstedt_1997</td>
<td>8</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Mechin_2001</td>
<td>9</td>
<td>1.0</td>
</tr>
<tr>
<td>Moreau_1998</td>
<td>10</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Pioneer_1995</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Poupard_2001</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Rebai_1997</td>
<td>13</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Ribaut_1996</td>
<td>14</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

The red cells indicate pairwise map comparisons for which we observed more than one common marker sequence. This means that there might be marker inversions between these maps. To see which markers are involved in these inversions, we propose to use the program MMapView.
Let’s start with the pairwise comparison between the genetic maps of experiments Poupard_2001 and Mechin_2001. First create the directory ‘images’ into ‘meta-map’ and run the following command line:

```
$java org.metaqtl.main.MaMapView -r xml/Poupard_2001.xml -m xml/Mechin_2001.xml
-c 1 --mrkt 2 -o meta-map/images/PoupardVSMechin
```

This creates two files: ‘PoupardVSMechin_1.jpeg’ and ‘PoupardVSMechin_1.par’. The first one is the image which represents the comparison between the chromosomes 1 of the two experiments and the second one the plot parameter used to generate the image. By default, the common marker sequences are not drawn so that we must modify the plot parameter file by setting the parameter WITH_COMMON_MARKER to true.

```
WITH_COMMON_MARKER=true
```

Other parameters can be also modified to obtain a better display of the chromosomes. For example:

```
CHROM_DISTANCE_SCALE=3.0 #default is 5
COMMON_STROKE_WIDTH=1.0 #default is 5 (the stroke used to show the common sequences)
LAYER_VSPACE=50.0 #default is 50 (this increases the space between the chromosomes)
```

Now move the plot parameter file to ‘meta-map/images/comparison.par’ (this because we will use the same parameter file for all the comparisons to do) and run the command:

```
$java org.metaqtl.main.MaMapView -r xml/Poupard_2001.xml -m xml/Mechin_2001.xml
-c 1 --mrkt 2 -o meta-map/images/PoupardVSMechin
-p meta-map/images/comparison.par
```

Now, let’s have a look to the file ‘meta-map/images/PoupardVSMechin.jpeg’ (use your file/web browser or a standard image viewer)
Indeed, there are 3 common sequences in the same order (the blue ones) and two common marker sequences in reverse order (the red ones). We can see that these inversions involve very close markers in both chromosome maps. Besides, if we have a look to the file ‘infomap_mrk.txt’ we can see that:
only the marker umc39c is observed in another mapping experiment, Charcosset_unpub. So removing a marker per inversion will not degrade the consensus map construction for the chromosome 1.

Then, we create the file ‘mrkrm.txt’ in the folder meta-map in order to record the two markers to remove

```
Mechin_2001 1 p1
Mechin_2001 1 gsy177b(mads)
Poupard_2001 1 p1
Poupard_2001 1 gsy177b(mads)
```

If we repeat this operation for the other pairwise comparison showing a number of common marker sequences greater than 1, we can establish a full list of dubious markers to remove (note that in some cases you can update the name of the marker instead of removing it using the option --mrkup in MetaDB):

```
Mechin_2001 1 p1
Mechin_2001 1 gsy177b(mads)
Poupard_2001 1 p1
Poupard_2001 1 gsy177b(mads)
Blanc_2003 1 umc1278
Pouard_2001 1 umc1278
Rebai_1997 1 umc11a
Rebai_1997 1 umc58
Rebai_1997 1 umc49c
Ribaut_1996 1 npi97a
Groh_1998 1 npi97a
```

Then, we have to run back the command MetaDB with the option --mrkrm to remove these markers from the XML database:
You can run back the command `InfoMap` to see that now there are no longer marker inversions between the chromosome 1 of the different input maps. Of course the operations described in this section must be repeated for all the chromosomes.

### 6.3.2 Building the consensus map

When all the marker inversions have been resolved, we can build the consensus map using the command `ConsMap`.

```bash
$java org.metaqtl.main.ConsMap -m xml -o meta-map/consensus
```

This creates two files into the directory ‘meta-map’:

- ‘consensus_map.xml’: the XML representation of the consensus map.
- ‘consensus_fit.txt’: the standardized residuals between the marker intervals in the input maps and the corresponding ones in the consensus map.

Then, if we want to display the consensus map in tabulated text format, we can use the command `Xml2A` as follows:

```bash
$java org.metaqtl.main.Xml2A -x meta-map/consensus_map.xml -t map -f tab \
-o meta-map/consensus_map.txt
```

Open the file ‘consensus_map.txt’. For the chromosome 1 you should have something like that:

```
map group locus type position meta.occurence
1 ph1056 M 0 1
1 bnlg1124 M 4.71 1
1 bn15.62a M 6.7 6
1 umc164 M 9.98 2
1 umc94a M 11.7 4
1 umc1177 M 12.51 1
... ... ... ...
1 ucm86a M 248.82 1
1 ph1064 M 250.13 1
1 phi22756 M 253.6 1
1 bn16.32 M 254.1 9
1 umc1977 M 268.5 1
```

The first column `map` is empty since by default the consensus map has no name. To add a name to the consensus map you must edit by hand the file `consensus_map.xml` and to put the suited name of the consensus map into double quoted after the attribute `name` in the tag `genome`:

```
<genome-map name="my_consensus_map">
```

The last column `meta.occurence` gives the number of times the marker have been seen into the input mapping experiments on the same chromosome (it should be the same than in the file ‘infomap_mrk.txt’ previously generated).

Let’s plot the histogram of these values.
We can see that we have an excess of singleton markers, i.e. of markers which have observed only on a single mapping experiments. So the consensus map must be considered with care. In order to see how this excess of singleton markers can affect the construction of the consensus map, it could be interesting to compare the consensus map with a reference map.

For example, we downloaded from the MaizeGDB web site the reference map called Genetic 2005. This raw text file of this reference map is in the directory ‘data/ref-map’ and it is called ‘genetic_2005.txt’. So, before making the comparison with our consensus map, we have to convert this file into a XML representation. To do so, use the command A2Xml as follows:

```
```

**Remark:** DO NOT CREATE the XML reference map into the directory ‘xml’. If not, the reference map will be used in the subsequent analyses as a mapping experiment.

To compare our consensus map with the reference map we then use the command MMapView as follows:

```
$java org.metaqtl.main.MMapView -m meta-map/consensus_map.xml -r ref-map/genetic_2005.xml -c 1 --mrkt 2 -o meta-map/images/RefVsCons -p meta-map/images/comparison.par
```
We can see that there are 8 inversions and that some of these inversions are not common sequences (in gray). Now, let’s have a look to the occurrence of the 11 markers involved in these inversions (into the file `consensus_map.txt`):

```
... ... ... ... ...
1 bn15.62a M 6.7 6
... ... ... ... ...
1 obf1 M 101.9 1
1 umc167a M 102.99 1
... ... ... ... ...
1 csu574b(eif2B) M 106.04 1
... ... ... ... ...
1 rs2 M 113.45 1
... ... ... ... ...
1 php20644 M 126.38 1
... ... ... ... ...
1 umc58 M 133.3 5
```
Now, let’s have a look to the way these markers are distributed among the input mapping experiments using the file ‘infomap_mrk.txt’ (note that if you have kept the option -t set to 2 as in the previous example of the use of InfoMap you need to run again the command by discarding this option in order to get the information for the singleton markers).

<table>
<thead>
<tr>
<th>Marker</th>
<th>Occurrence</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>umc167a</td>
<td>1</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>obf1</td>
<td>1</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>kn1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>rs2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>csu137b(ap)</td>
<td>1</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>php20644</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>csu574b(eif2B)</td>
<td>1</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adh1</td>
<td>3</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>umc107a(croc)</td>
<td>3</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>umc58</td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bns5.62a</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then, let’s remove the 7 singleton markers (add the following list to the file ‘mrkrm.txt’ previously edited):

- Bohn_1996 1 umc167a
- Blanc_2003 1 rs2
- Charcosset_unpub 1 obf1
- Charcosset_unpub 1 kn1
- Charcosset_unpub 1 csu137b(ap)
- Pioneer_1995 1 php20644
- Pioneer_1995 1 csu574b(eif2B)

Finally, recreate the XML database and rebuild the consensus map

```
$ java org.metaqtl.main.MetaDB -e data/experiments.csv -m data/genetic-map -q data/qt1-map -t data/trait_ontology.csv -d data/marker_dictionary.csv -o xml --mrkm meta-map/mrkrm.txt
$ java org.metaqtl.main.ConsMap -m xml -o meta-map/consensus
```

Now, if we want to visualize if there are some standardized residuals (the ones stored in the file ‘consensus_fit.txt’) which are significantly outside the expected distribution, we can use the command MMapView by setting the options --htest and --hth. The last option --hth allows the user to define the level of the test. For example, if we want to get the marker intervals which standardized residuals are significantly outside the expected distribution at a level of 5\%, we will use the following command:
Note that the value of the option --\texttt{hth} must be equal to one minus the level of the test. Normally, you will obtain something like that:

\begin{quote}
\$\texttt{java org.metaqtl.main.MMapView -r meta-map/consensus_map.xml -m xml -c 1} \\
\texttt{-o meta-map/images/ConsensusVSAll} \\
\texttt{-p meta-map/images/consensus.par} \\
\texttt{--hth 9.5E-2 --htest}
\end{quote}

\\[ WARNING \]: Unable to project QTL Rebai\_1997\_SD\_14 on chromosome 2\\[ WARNING \]: Unable to project QTL Rebai\_1997\_SD\_27 on chromosome 2\\[ WARNING \]: Unable to project QTL Rebai\_1997\_SD\_21 on chromosome 2\\[ WARNING \]: Unable to project QTL Rebai\_1997\_SD\_7 on chromosome 2

\textbf{6.4 Step 3 - Projection of the QTL}

Once the consensus map have been established, we can project all the observed QTL from the initial mapping experiments onto this consensus map. This is a compulsory step to carry out the meta-analysis.

To do so, use the program \texttt{QTLProj} as follows:

\begin{quote}
\$\texttt{java org.metaqtl.main.QTLProj -m meta-map/consensus_map.xml} \\
\texttt{-q xml -o meta-qtl/consensus --verbose}
\end{quote}

Note that setting the option \texttt{--verbose} displays the warnings. In this case, it seems that there is a problem with the mapping experiment Rebai\_1997 for the chromosome 2. Since here we focus on chromosome 1, we will ignore these warnings for the rest of the tutorial.

This command generates two files into the directory ‘\texttt{meta-qtl}’:

- ‘\texttt{consensus_map.xml}’: the consensus map plus the projected QTL.
- ‘\texttt{consensus_qtl.xml}’: the consensus map with only the projected QTL.
Now, if we want to see how the QTL have been projected and are distributed along the chromosome 1, we can use the command `MapView` as follows:

```
java org.metaqtl.main.MapView -m meta-qtl/consensus_map.xml -c 1 \
-o meta-qtl/images/consensus \
-p meta-qtl/images/consensus.par -q
```

This should give the following picture:

![Picture of QTL distribution](image_url)

Now, if we want to see the properties of the QTL projection for each QTL we can export the file `consensus_qtl.xml` into a flat text file using the command `Xml2A`:

```
java org.metaqtl.main.Xml2A -x meta-qtl/consensus_qtl.xml\ 
-t map -f tab
```

Thus we obtain the following list for the chromosome 1:
The attributes `qtl.ci.from` and `qtl.ci.to` gives the new confidence interval of the QTL when a confidence interval exists in the initial mapping experiment. This new confidence interval is computed according to the projection scale given by the homothetic ratio given by the attribute `qtl.proj.mapScale`, while the position of the QTL is computed relatively to the flanking markers using the homothetic ratio given by the attribute `qtl.proj.intScale`. The boolean attributes `qtl.proj.shareFlanking` and `qtl.proj.swapFlanking` indicate for the former that the QTL flanking markers are observed into both the initial and the consensus map, and the later will be `true` if these markers are observed in a reverse order between the two maps.

Note that for half of the QTL in chromosome 1 there is no information about the CI. Nevertheless, if you look at the file `'consensus_qtl.txt'` you will see another field called `qtl.rsquare` which gives the percentage of variance explained by the QTL (this field was not included in the above table) and from which a theoretical confidence interval could be computed according to the mapping population properties (size and type of cross: these two parameters are given by the attributes `qtl.cross.size` and `qtl.cross.type`).

### 6.5 Step 4 - QTL Clustering

#### 6.5.1 QTL Clustering

Now, we are ready to start the QTL meta-analysis itself using the program `QTLClust`.

```
$java org.metaqtl.main.QTLClust -q meta-qt/consensus_map.xml -t xml/ontology.xml -k 10 -c 1 -o meta-qt/meta-analysis_1 --verbose
```

We use here the trait ontology `xml/ontology.xml` so that all the observed traits are clustered into a single meta-trait called “FT” (for Flowering Time): this means that all the observed
QTL are taken into account during the meta-analysis for the meta-trait FT. Note that by setting the option \(-k\) to 10 we avoid to explore models with more than 10 meta-QTL on the chromosome.

This command generates three files into the directory ‘meta-qtl’:

- ‘meta-analysis_1_res.txt’: this file contains the details of all the QTL clustering results from \(k=1\) to 10.
- ‘meta-analysis_1_crit.txt’: this file gives for each model \((k=1\) to 10\) the loglikelihood and the corresponding model choice criteria.
- ‘meta-analysis_1_model.txt’: this file gives for each kind of model choice criterion the best model (i.e the model which generally minimizes the criterion value).

So, let’s have a look to the file ‘meta-analysis_1_model.txt’:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Chromosome</th>
<th>Trait</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC 1</td>
<td>FT</td>
<td>FT</td>
<td>7</td>
</tr>
<tr>
<td>Criterion</td>
<td>Chromosome</td>
<td>Trait</td>
<td>Model</td>
</tr>
<tr>
<td>AICc 1</td>
<td>FT</td>
<td>FT</td>
<td>7</td>
</tr>
<tr>
<td>Criterion</td>
<td>Chromosome</td>
<td>Trait</td>
<td>Model</td>
</tr>
<tr>
<td>AIC3 1</td>
<td>FT</td>
<td>FT</td>
<td>7</td>
</tr>
<tr>
<td>Criterion</td>
<td>Chromosome</td>
<td>Trait</td>
<td>Model</td>
</tr>
<tr>
<td>BIC 1</td>
<td>FT</td>
<td>FT</td>
<td>7</td>
</tr>
<tr>
<td>Criterion</td>
<td>Chromosome</td>
<td>Trait</td>
<td>Model</td>
</tr>
<tr>
<td>AWE 1</td>
<td>FT</td>
<td>FT</td>
<td>7</td>
</tr>
</tbody>
</table>

We can see that for each model choice criterion (AIC,AICc,AIC3,BIC,AWE) the best model is the model with 7 QTL clusters, i.e 7 meta-QTL. To see how the observed QTL are distributed into these 7 QTL clusters we can use the program MQTLView. In order to run MQTLView we have to create a file which tells to the program which model it has to represent. To do so, simply open the file ‘meta-analysis_1_model.txt’, keep only one line per chromosome, remove the column called Criterion, and save it as ‘meta-analysis_1_best.txt’. Here this file must look like that

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Trait</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FT</td>
<td>7</td>
</tr>
</tbody>
</table>

Then, we are ready to use MQTLView:

```
$ java org.metaqtl.main.MQTLView -m meta-qtl/consensus_map.xml -c 1 -r meta-qtl/meta-analysis_1_res.txt -b meta-qtl/meta-analysis_1_best.txt -p meta-qtl/images/consensus.par -o meta-qtl/images/meta-analysis_1
```

This should give the following picture:
Finally, we can extract for the best model with 7 meta-QTL some useful statistics such like the confidence intervals of the meta-QTL and the \textit{a posteriori} membership probabilities of each observed QTL together with their predicted positions. To do so, use the command \texttt{QTLClustInfo} as follows:

\begin{verbatim}
$java org.metaqtl.main.QTLClustInfo -r meta-qtl/meta-analysis_1_res.txt -c 1 -b 7 --kmin 1 --kmax 10 -t FT -o meta-qtl/meta-analysis_1_info.txt
\end{verbatim}

Let's have a look to the file `meta-analysis_1_info.txt`:

```
# Meta-QTL Table
##
---
QTL  Position  Weight  Distance  CI(95%)  UCI(95%)
---
```
### 6.5.2 QTL Tree

Another technique to group the observed QTL into clusters is to use standard agglomerative clustering techniques, although this method does not make it possible to infer the best number of
clusters. Nevertheless, it can help to visualize how the observed QTL are distributed along the chromosome.

Let’s run the program QTLTree as follows:

```
$java org.metaqtl.main.QTLTree -q meta-qtl/consensus_map.xml \
- o meta-qtl/meta-tree.txt \
-t xml/ontology.xml --verbose
```

This generates one file, ‘meta-tree.txt’ into the directory ‘meta-qtl’. This file contains for each chromosome a summary of the observed QTL positions and then the clustering tree computed by the algorithm in Newick format. For example, for the chromosome 1 this gives something like that:

```
CR 1
TR FT 32
QT 0 Bohn_2000_DPS_2 57.42 1.54
QT 1 Bohn_2000_DPS_1 157.06 8.85
...
QT 30 Rebai_1997_SD_1 104.55 5.47
QT 31 Mechin_2001_SD_1 106.94 12.77

```

At first sight, it is not really easy to imagine from this file the tree that connects the QTL. To display the tree, we can use the command MQTLView. A good point is that we can visualize together the result of the previous clustering and the obtained tree.

```
$java org.metaqtl.main.MQTLView -m meta-qtl/consensus_map.xml -c 1 \
- r meta-qtl/meta-analysis_1_res.txt \
- b meta-qtl/meta-analysis_1_best.txt \
- p meta-qtl/images/consensus.par \
- o meta-qtl/images/meta-analysis_1 \
--tree meta-qtl/meta-tree.txt
```

Then you should get the following picture:
6.6 Step 4 - Post processing

6.6.1 Extracting the meta-QTL

Now, suppose we want to get the 7 meta-QTL of the chromosome 1 separately on the consensus map. To do so, we can use the command `QTLModel` as follows:

```
$java org.metaqtl.main.QTLModel -m meta-map/consensus_map.xml \
   -r meta-qtl/meta-analysis_1_res.txt \ 
   -b meta-qtl/meta-analysis_1_best.txt \ 
   -o meta-post/metamap.xml
```

Then, if we use `MapView` to display the map `metamap.xml` we obtain something like that:
6.6.2 Projection of the meta-QTL

Finally, it could be useful to project the meta-QTL onto a reference map which provides candidate genes in order to study the congruency between these candidate genes and the meta-QTL.

Then, suppose we want to project the meta-QTL onto the reference map genetic_2005 which we have previously used. So, we can use the program QTLProj as follows:

```
$java org.metaqtl.main.QTLProj -m ref-map/genetic_2005.xml \
-q meta-post/metamap.xml \
-o meta-post/genetic_2005 \
--verbose
```

Then, if we use MMapView to display the result of the projection we obtain something like that:
Appendix A Copying This Manual

Version 1.2, November 2002
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ‘‘GNU Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.