procedure Algorithm 2

input:
 generic compact representation of a neighborhood
 set Q of query elements

output:
 comparison results of pertinent target sets with Q

begin
 Init queue with nodes corresponding to query elements
 while the queue is not empty do
 $T \gets$ next element of the queue
 T.tag \gets pot_pert \triangleright potentially pertinent

 \triangleright step 1: test Rule 2 of pertinence definition
 if $\exists T' \in T$.children having T.common = T'.common then
 T.tag \gets not_pertinent \triangleright Rule 2 is violated

 \triangleright step 2: test Rule 3 of pertinence definition
 for each $T' \in T$.children having T'.tag = pot_pert do
 if T.#differing = T'.#differing then
 T'.tag \gets not_pertinent \triangleright Rule 3 is violated
 else if T is last parent processed of T' then
 \triangleright T' is pertinent, performs comparison
 output(similarity_index(Q, T'))

 if T does not contain all the query elements then
 for each parent node T' of T do
 if $|T'| \leq$ max_target_size then
 propagate common elements to T'
 append T' to the queue

 end while
end