APPENDIX

A The number of ways to place m motifs with widths in a sequence of length l without overlaps

We show here the number of ways to place $m = 2$ motifs with widths in a sequence of length l with no overlaps. The general case can be proved by induction on the number of motifs.

Proof The number of ways to place two motifs, M_A of width w_A and M_B of width w_B in a sequence of length l is

$$\psi(l, w_A, w_B, 2) = \text{(number of ways to place } M_A) \times \text{(number of ways to place } M_B \text{ given } M_A \text{ placement)}. \quad (1)$$

Most placements of M_A will prevent the placement of M_B at w_A positions, the positions occupied by M_A. The exceptions to this situation occur when M_A is within $w_B - 1$ of either the beginning or end of the sequence. When M_A is placed at position i where $0 \leq i \leq w_B - 1$ or $l - (w_A - 1) - w_B + 1 \leq i \leq l - (w_A - 1)$, the placement of M_B is constrained. In addition to not being able to be placed on the w_A positions M_A is occupying, it further is not able to be placed between M_A and the closest end of the sequence. We refer to the cases of M_A starting at $\{0, \ldots, w_B - 1\}$ and $\{l - (w_A - 1) - w_B + 1, \ldots, l - (w_A - 1)\}$ as exceptional cases, with the other cases refereed to as regular cases.

With this division, we can now write

$$\psi(l, w, 2) = \text{(number of regular placements of motif } M_A) \times \text{(placements of } M_B \text{ given that } M_A \text{ has a regular placement)} + \sum_{i=1}^{w_B-1} \text{(placements of } M_B \text{ given } M_A \text{ has exceptional placement } i). \quad (2)$$

The first term in Equation 2 can be written as

$$\left(l - w_B - w_B - (w_A - 1)\right) \left(l - w_A - (w_B - 1) - (w_B - 1)\right) \quad (3)$$

The second term, summing over the exceptional cases can be written as

$$2 \times \sum_{i=0}^{w_B-1} \left[l - (w_B - 1) - w_A - i\right]. \quad (4)$$
where factor of 2 is to deal with the *exceptional* cases both in the beginning and the end of the sequence.

Substituting Equations 3 and 4 into Equation 2, we have

$$\psi(l, w_A, w_B, 2) = \left[l - (w_A - 1) - 2w_B \right] \left[l - w_A - 2(w_B - 1) \right] + 2 \times \sum_{i=0}^{w-1} \left[l - (w_B - 1) - w_A - i \right].$$

It is straightforward to show that this is equivalent to

$$2 \times \left(L - \sum_{i=0}^{w-1} (w - 1) \right).$$

This completes the proof for the $m = 2$ case.