(Supplement 4) Definition of the filter

False positive detections of hypothetical linearities are increasing at increasing technical errors but may be shifted towards false negative error rates, if needed. Such a case might be wished if false positive detections would hamper biological interpretations in a more severe way than if real linearities would stay undetected. Therefore, a filter has been developed using a calculation of a characteristic value t to suppress false positive errors (S17).

\[
(t) = \sqrt{\frac{\sum_{j=1}^{m} (\mu_x - x_j)(\mu_y - y_j)}{\sum_{j=1}^{m} \sigma_{tech}(x_j)\sigma_{tech}(y_j)}}
\]

(S17)

μ_x, mean of all measurements of metabolite x

μ_y, mean of all measurements of metabolite y

$\sigma_{tech}(x_j)$ standard deviation of the technical error distribution of metabolite x when measured in sample j

$\sigma_{tech}(y_j)$ standard deviation of the technical error distribution of metabolite y when measured in sample j

The numerator in formula (1) comprises a modified form of the covariance. For the case of an exclusive technical error variance and an infinite sample number, t approximates zero because then the covariance will converge to zero. The denominator estimates the maximal covariance which can result from the assumed technical error. An upper limit for t can be determined by simulating a technical error distribution around a constant value. If the actual t is larger than the theoretical threshold for t, the hypothesis can be rejected that the corresponding covariance may have originated at random through the technical error. For $t < t_{lim}r$, false positive discovery rates cannot be eliminated. In figure 1, simulation results for parameter t are given for a variation of sample numbers. The simulation set consists of the following steps:

- All metabolite concentrations are set to zero
- Each metabolite concentration is superimposed by technical error sampled from a Gaussian distribution
- t is determined according to formula (1)

The simulation has been repeated at least 55,000 times.

Figure S4.1: Simulation results for parameter according to equation (1), varying the number of samples in a data set. For each number of samples, one million simulations were carried out. As example, the threshold for \(t \) a $p=0.005$ and three samples is given.

The value of t has been adjusted in a way that the detection rate of false positives remains below 5% independently from the degree of noise.