Input: A graph G with m edges; each edge e has a given length $l(e)$.

Initialise:

1. Pick a vertex s, which is incident to the edge with smallest distance $D(e)$.
2. Set $U := s$ and let T be a tree with one vertex, namely s.
3. Set the calibration coefficients C of s zero, $C(s) := (0, 0)$.
4. Set measure of path weight $W(s) := \infty$.

Grow Tree: While $U \neq V$,

5. Among all edges uv with $u \in U$ and $v \in V \setminus U$ pick that one with smallest $D(uv)$.
6. Add uv to T and remove it from G by setting $D(uv) = \infty$.
7. Add v to U.
8. Compute $C(v, u)$ where u is used as calibration peak-list. Assign $C(v, s) := C(v, u) \circ C(u, s)$.
9. Set the measure of path weight $W(v, s) = \min(S(uv), W(u, s))$ (S - similarity).

Output:

10. T – which is a maximum spanning tree.
11. C – which is the calibration list to align all peak-lists (vertices) to the starting peak-list (vertex) s.
12. W – which are the weights of the path from $s \rightarrow v \in F$.

Figure 1: Modified Dijkstra-Prim MST algorithm. The algorithm starts with vertex s (peak-list) belonging to the peak-list pair with smallest distance (line 1) (the standard algorithm starts with an arbitrary pair). In addition to computing the MST T, the algorithm computes the calibration constants $C(v, s)$ (line 8) and the connection weight $W(u)$ (line 9).