1. A population E_0 of n predictors $\{G_1, ..., G_n\}$ is created. A predictor G_i is subset of m features (genes) $\{g_1, g_2, ..., g_m\}$ initially created by the random selection of genes from the initial gene pool GP.

2. Until termination do:

3. For each predictor $G_i \in E_k$, create a new predictor

 a) Randomly mutate the genes in G_i according to the three possibilities:
 i. Add an additional gene chosen randomly from the initial gene pool GP to G_i, producing the new predictor G'_i
 ii. Delete a randomly selected gene from G_i to produce G'_i
 iii. Keep the feature set the same, $G'_i = G_i$

 b) Compute the scoring function of the new predictor $S(G'_i)$

 c) Compute the difference of the score values $\delta_i = S(G'_i) - S(G_i)$

 d) Compute the weight for G'_i: $w_i = \exp(\beta, \delta_i)$ where β is the inverse temperature.

4. Let Z be the sum of the weights $w_1...w_n$.

5. Create a new population E_{k+1} by replicating all new predictors G'_i according to their normalised weight $w_i \times n/Z$. With a normalised weight w, a predictor is replicated $\lfloor w \rfloor$ times and additional time with probability $w - \lfloor w \rfloor$, where $\lfloor w \rfloor$ is the largest integer less than w.

6. Using the elitism technique, the worst predictor of the new population E_{k+1} is replaced by the best predictor from the previous generation.