Frame 1: Predicate MUTATE

<table>
<thead>
<tr>
<th>Argument Structure for Biology</th>
<th>PropBank Argument Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg1: physical location where mutation happen</td>
<td>Sense = to undergo and cause</td>
</tr>
<tr>
<td>// exon, intron //</td>
<td>to undergo mutation</td>
</tr>
<tr>
<td>Arg2: mutated entity</td>
<td>Arg0: agent</td>
</tr>
<tr>
<td>// gene //</td>
<td>Arg1: entity undergoing</td>
</tr>
<tr>
<td>Arg3: changes at molecular level</td>
<td>mutation</td>
</tr>
<tr>
<td>ArgR: changes at phenotype level</td>
<td></td>
</tr>
</tbody>
</table>

Match to MUTATE senses in WordNet: sense 1 – undergo mutation

Sentence 1.1 The exon 5 mutated allele with the premature translation termination resulted in severe deficiency of Hex A.

Pred: mutate

Arg1: exon 5
Arg2: allele
Arg3: [with] the premature translation termination
ArgR: resulted in severe deficiency of Hex A

Sentence 1.2 The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein.

Pred: mutate

Arg1: -
Arg2: gene
Arg3: [in] variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice
ArgR: encodes a novel predicted transmembrane protein

Sentence 1.3 Transient expression of the exon 8 mutated alpha-chain cDNA in COS-1 cells resulted in deficiency of enzymatic activity.

Pred: mutate

Arg1: exon 8
Arg2: alpha-chain cDNA in COS-1 cells
Arg3: -
ArgR: resulted in deficiency of enzymatic activity

Frame 2: Predicate INITIATE

<table>
<thead>
<tr>
<th>Argument Structure for Biology</th>
<th>PropBank Argument Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg0: agent</td>
<td>Sense = begin</td>
</tr>
<tr>
<td>//gene//</td>
<td>Arg0: agent</td>
</tr>
<tr>
<td>Arg1: entity created</td>
<td>Arg2: theme (-creation)</td>
</tr>
<tr>
<td>//transcription or translation//</td>
<td>Arg3: instrument</td>
</tr>
<tr>
<td>Arg2: specific location on gene</td>
<td>Arg4: method</td>
</tr>
<tr>
<td>//exon or intron//</td>
<td></td>
</tr>
<tr>
<td>Arg3: location as tissue or cell</td>
<td></td>
</tr>
<tr>
<td>Arg4: method</td>
<td></td>
</tr>
</tbody>
</table>

Match to INITIATE senses in WordNet: sense 1 – bring into being

Sentence 2.1 Apparently HeLa cells either initiate transcription at multiple sites within RPS14 exon 1, or capped 5' oligonucleotides are removed from most S14 mRNAs posttranscription.

Pred: initiate

Arg0: -
Arg1: transcription
Arg2: [at] multiple sites within RPS14 exon 1
Arg3: HeLa cells
Arg4: -

Sentence 2.2 I kappa B-epsilon translation initiates from an internal ATG codon to give rise to a protein of 45 kDa, which exists as multiple phosphorylated isoforms in resting cells.

Pred: initiate

Arg0: -
Arg1: I kappa B-epsilon translation
Arg2: [from] an internal ATG codon
Arg3: -
Arg4: -

Sentence 2.3 Since RTKs initiate signaling by recruiting downstream components to the activated receptor, proteins that are immediately downstream of an activated RTK can be identified by first identifying sequences in the RTK that are necessary to activate downstream signaling (Schlessinger and Ullrich, 1992; Pawson, 1995).

Pred: initiate

Arg0: RTKs
Arg1: signaling
Arg2: -
Arg3: -
Arg4: [by] recruiting downstream components to the activated receptor