Alphabet

Represents the motifs (states) in the substitution model. Relates alphabet motifs to ambiguity codes, and performs translation for different genetic codes.

AlignAnalysis

For reading and manipulating sequence alignments.

LikelihoodFunction

Performs the likelihood calculation either by itself, or by calling `calculatelikelihood`, a C++ module. Can also simulate an alignment, and estimate posterior probabilities of ancestral motifs.

LikelihoodFunction

ParameterController

Defines the parameterisation of the statistical model, sets parameter starting values and bounds for optimisation. Specifies the mapping of parameters in the optimisation vector to the likelihood calculation.

Optimisers

Bound-constrained numerical optimiser. Takes a vector of parameter values, their bounds, and a controller object for optimisation.

Parallel

 Defines a parallelisation stack with virtual processors. Communicates among processors using PyPar, a Python MPI interface.

SubstitutionModel

Services for defining and implementing Markov models of substitution. Both the preparation of the instantaneous rate matrix and the matrix exponential calculations is performed by a C / C++ module.

Tree

For reading and manipulating phylogenetic trees.

AlignAnalysis

For reading and manipulating sequence alignments.

ParametricBootstrap

Used to assess parameter confidence intervals or likelihood-ratio probabilities.