Require: Ξ, Θ, l, d
set a suitable γ according to the available memory

for a pattern P in Ξ do
 for $i \leftarrow 1$ to $\lfloor l/\gamma \rfloor$ do
 put P into $(P_{\gamma,i}, \gamma, i, l, d)$-group
 end for
end for

repeat
 $\Phi \leftarrow$ pulling the patterns that have yet to be processed in Θ according to the size of memory

for a pattern Q in Φ do
 put Q into $(\Gamma, \gamma, i, l, d)$-groups if Q is $(\gamma, i, \lfloor \gamma d/l \rfloor)$-matched to a γ-pattern Γ, where $1 \leq i \leq \lfloor l/\gamma \rfloor$
end for

while there are $(\Upsilon, \gamma, i, l, d)$-groups yet to be processed do
 wait for a processor that completes the task that it is given
 $\Delta \leftarrow$ an unprocessed $(\Upsilon, \gamma, i, l, d)$-group
 assign the processor to process Δ \{beginning of parallel processing\}
 for a pattern P in Δ_{Ξ} do
 compare P to all patterns in Δ_{Φ}
 if any (l, d)-similar pattern to P is found then
 discard P from Δ_{Ξ} and Ξ
 end if
 end for \{ending of parallel processing\}
end while
until all patterns in Θ are processed
return the remaining patterns in Ξ