(A) KRLMM workflow

1. IDAT files
2. GenomeStudio
3. GenCall output (including X raw & Y raw values)
4. crlmm R/Bioconductor package
5. KRLMM: `genotype.Illumina(..., call.method='krlmm')`
 - Normalization (between sample quantile per channel)
 - Genotyping (one-dimensional k-means clustering of M-values, using k predicted by logistic regression)
6. Genotype calls
 Call confidence scores

(B) Regression analysis to choose k

For SNP i:

- **R_{ik}**: residual sum of squares for SNP i for a given k (1, 2, 3)
- **D_{ik}**: Mahalanobis distance between k-means cluster centers and nearest consensus cluster center for SNP i for a given k (1, 2, 3)
- **H_{ik}**: deviation from Hardy-Weinberg equilibrium for SNP i for a given k (2, 3)

Use variables R_{ik}, D_{ik}, and H_{ik} to predict k for SNP i using logistic regression with coefficients pre-determined using 10,000 SNPs where k is known in advance (based on HapMap samples and independent calls).