Supplement

Distance Metric Proof

A function \(d(x, y) \) is a distance metric if it observes the following conditions for all words \(x \) and \(y \):

- \(d(x, y) = 0 \iff x = y \)
- \(d(x, y) \geq 0 \)
- \(d(x, y) = d(y, x) \)
- \(d(x, y) \geq d(x, z) + d(y, z) \)

Proof for \(d_{\text{SL}}(x, y) = 0 \iff x = y \):

Three cases need to be considered:

1. Words \(x \) and \(y \) are the same sequences, i.e. they are of the same length and bases at the same position are equal. Thus, no operations are necessary to transform \(x \) into \(y \) and their distance is 0
2. Word \(x \) is a prefix of \(y \): \(x \) is elongated to match \(y \) exactly and no other operations are necessary, in this case we consider \(x \) to be equal to \(y \) by definition
3. Word \(y \) is a prefix of \(x \), \(x \) is truncated to match the length of \(y \) and no further operations are necessary, in this case we consider \(x \) to be equal to \(y \) by definition

Proof for \(d_{\text{SL}}(x, y) \geq 0 \)

There are either no operations necessary to transform \(x \) into \(y \) (\(d_{\text{SL}}(x, y) = 0 \)) or one needs to apply substitutions, insertions, and deletions to \(x \) to transform it into \(y \) in which case \(d_{\text{SL}}(x, y) > 0 \).

Proof for \(d_{\text{SL}}(x, y) = d_{\text{SL}}(y, x) \)

All operations in this distance measure are symmetrical: An insertion of base \(B \) at position \(p \) (abbrv. \(\text{ins}(B, p) \)) is the reversal of deletion of base \(B \) at position \(p \) (abbrv. \(\text{del}(p) \)) and vice versa. A substitution of base \(B_1 \) with base \(B_2 \) at position \(p \) (\(\text{sub}(B_2, p) \)) is the reversal of a substitution of base \(B_2 \) with base \(B_1 \) at position \(p \) (\(\text{sub}(B_1, p) \)). Truncation (\(\text{trunc()} \)) is the reversal of the elongation (\(\text{elong()} \)) and vice versa.

The distance \(d_{\text{SL}}(x, y) \) can be expressed as a sequence of operations \(\text{ins}(), \text{del}(), \text{sub}() \) followed by either \(\text{trunc()} \) or \(\text{elong()} \) to match \(x \) with \(y \), e.g.: \(x \rightarrow \text{sub} \rightarrow \text{ins} \rightarrow \text{del} \rightarrow \text{trunc} \rightarrow y \). The reverse operations sequence to transform \(y \) to \(x \) is obtained by reversing the individual substitution, deletion and insertion operations in reverse order and finalize with the reverse of the elongation or truncation operation: \(y \rightarrow \text{ins} \rightarrow \text{del} \rightarrow \text{sub} \rightarrow \text{elong} \rightarrow x \). The number of these operations is equal to the number of operations to transform \(x \) into \(y \) and therefore \(d_{\text{SL}}(y, x) = d_{\text{SL}}(x, y) \).
Proof for $d_{SL}(x, y) \leq d_{SL}(x, z) + d_{SL}(z, y)$

Suppose the transformation of x to z is the result of a sequence of operations $O_{xz} = \langle o_{xz1}, o_{xz2}, \ldots, elong/\text{trunc} \rangle$. The transformation of z to y is the sequence of operations $O_{zy} = \langle o_{zy1}, o_{zy2}, \ldots, elong/\text{trunc} \rangle$. By the very nature of these operations, x can be transformed to y by the concatenation of both operation sequences without the elongation or truncation followed by its own truncation or elongation: $O_{xy} = \langle o_{xz1}, o_{xz2}, \ldots, o_{zy1}, o_{zy2}, \ldots, elong/\text{trunc} \rangle$. The number of substitutions, deletions and insertions in O_{xy} is the sum of substitutions, deletions and insertions in O_{xz} and O_{zy} and therefore $d_{SL}(x, y)$ is at most equal to $d_{SL}(x, z) + d_{SL}(z, y)$.

Distance Calculation

Algorithm of distance calculation (pseudocode) using dynamical programming:

```python
int function distance(Sequence sequence1, Sequence sequence2)
    set length_1 to length of sequence1
    set length_2 to length of sequence2
    declare distances[length_1+1][length_2+1]
    for i from 0 to length_1
        set distances[i][0] to i
    for j from 0 to length_2
        set distances[0][j] to j
    // Classical Levenshtein part
    for i = 1 to length_1
        for j = 1 to length_2
            set cost to 0
            if (sequence1[i-1] not equal to sequence[j-1])
                set cost to 1
            set distances[i][j] to minimum of
                distances[i-1][j-1] + cost, // Substitution
                distances[i][j-1] + 1, // Insertion
                distances[i-1][j] + 1 // Deletion
    set min_distance to distances[length_1][length_2]

    // New Sequence-Levenshtein part

    // Truncating
    for i from 0 to length_1
        set min_distance to minimum of min_distance and distances[i][length_2]

    // Elongating
    for j from 0 to length_2
        set min_distance to minimum of min_distance and distances[length_1][j]
```
return min_distance

Code Rates

![Graph showing the code rates of Levenshtein and Sequence-Levenshtein codes depending on the length of codewords.](image)

Figure S1. Code rates of Levenshtein and Sequence-Levenshtein codes depending on the length of codewords.

Sizes of Sequence-Levenshtein Codes

<table>
<thead>
<tr>
<th>n \ d</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>77</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>188</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>612</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>2123</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>5714</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>20887</td>
<td>232</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>(554)</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>(1583)</td>
</tr>
</tbody>
</table>

Table S1. Sizes of Sequence-Levenshtein Codes Code sets were filtered for biological/chemical eligibility (c.f. Methods). We did not formally analyse or simulate barcodes of length n=13nt or n=14nt.

Codes used in Simulation 3

Of every code, a random subset of 48 barcodes was used. The details of these codes are clarified in Table S2.
<table>
<thead>
<tr>
<th>Code Type</th>
<th>Length</th>
<th>Distance</th>
<th>Code Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levenshtein</td>
<td>6</td>
<td>3</td>
<td>66</td>
</tr>
<tr>
<td>Levenshtein</td>
<td>9</td>
<td>5</td>
<td>67</td>
</tr>
<tr>
<td>Sequence-Levenshtein</td>
<td>7</td>
<td>3</td>
<td>77</td>
</tr>
<tr>
<td>Sequence-Levenshtein</td>
<td>11</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>Linear</td>
<td>5</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>No Correction</td>
<td>3</td>
<td>NA</td>
<td>60</td>
</tr>
</tbody>
</table>

Table S2. Codes of Simulation 3