APPENDIX

In this section, we present the full details of the TDT-HET statistic, including the derivation of log-likelihoods.

Notation

M = The disease allele at the putative disease SNP locus.

N = The non-disease allele at the putative disease SNP locus.

\(x_{abc} \) = The trio where parent 1, parent 2, and affected child have \(a, b, \) and \(c \) copies of the M allele at the putative disease locus (range for all copies: 0 - 2). For example, \(x_{222} \) is the trio with mating type MM × MM and affected child genotype MM. **NOTE:** Throughout this work, we will use the notation \(abc \) interchangeably with \(x_{abc} \).

\(n_{abc} \) = The number of trios \(x_{abc} \) in the sample.

\(n \) = The total number of trios in the study.

\(D \) = Event that the child in a trio is affected.

\(t = \Pr(\text{heterozygous parent transmits M allele to affected offspring}) \). In this work, the null hypothesis, \(H_0 \), is \(t = 0.5 \). The alternative hypothesis, \(H_1 \), is \(t \neq 0.5 \).
\[\mu_{k,i} = \Pr(\text{Mating type } = i|D, \text{ population } = k) = \text{probability that the mating type is } i \text{ given that the child is affected and the trio comes from the } k^{th} \text{ population, } 1 \leq k \leq 2. \]

Throughout this work, we shall use the notation \(k = 1 \) to indicate that the trio is in the linked population \((t \neq 0.5) \) and \(k = 2 \) to indicate that the trio is in the unlinked population \((t = 0.5) \). Similar to Schaid and Sommer \(^1\), we consider 6 mating types in this work. We recognize that other models, such as those considered by Weinberg and colleagues \(^2,3\), require more than six mating type frequencies. We conjecture that our work extends to such situations.

\[\pi_1 = \Pr(\text{trio is linked to trait locus}) = \Pr(t \neq 0.5). \]

In this work we specify that \(t \) is the same for all linked trios. This specification is also made for the recombination fraction in some tests of linkage allowing for heterogeneity (see, e.g., work by C. A. B. Smith \(^4,5\) and Ott \(^6\), specifically the method implemented in programs such as HOMOG \(^6\), GENEHUNTER \(^7\), SIMWALK2 \(^8\), VITESSE \(^9\), MERLIN \(^10\), and other programs).

\[\pi_2 = 1 - \pi_1. \]

\(\hat{x} \) = Maximum likelihood estimate (MLE) of the parameter \(x \). This MLE is determined by means of the EM algorithm.

\(C = \) A penalty used to stabilize the parameter estimate \(\pi_1 \) in the log-likelihood equation for the true data (see Equation (1)).
$z_{k,j} =$ The indicator variable for population k and trio x_j, where the subscript j indicates the j^{th} trio in the sample.

$f(x_j; \overrightarrow{\theta_k}) =$ Probability density function of the trio x_j and the vector of parameters $\overrightarrow{\theta_k}, 1 \leq k \leq 2$.

The values of this function are provided in Table 1 (right-most column).

$\overrightarrow{\theta_k}, 1 \leq k \leq 2 =$ Vector of parameters for the probability density functions $f(x_j; \overrightarrow{\theta_k})$. We consider two scenarios in this work: (1) All trios are drawn from a population with the same set of mating type frequencies; and (2) The linked and the unlinked sets of trios are drawn from populations in which the set of mating type frequencies differ by population. Under scenario (1), we have $\mu_{1,i} = \mu_{2,i} = \mu_i$ for all i, $\overrightarrow{\theta_1} = (t, \pi_1, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6)$, and $\overrightarrow{\theta_2} = (\frac{1}{2}, \pi_2, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6)$. Under scenario (2), each mating type is different for the linked and the unlinked sub-populations. It follows that $\mu_{1,i} \neq \mu_{2,i}$ for at least one i,

$\overrightarrow{\theta_1} = (t, \pi_1, \mu_{1,1}, \mu_{1,2}, \mu_{1,3}, \mu_{1,4}, \mu_{1,5}, \mu_{1,6})$ and $\overrightarrow{\theta_2} = (\frac{1}{2}, \pi_2, \mu_{2,1}, \mu_{2,2}, \mu_{2,3}, \mu_{2,4}, \mu_{2,5}, \mu_{2,6})$. We comment that the arrow \rightarrow over each θ indicates that the term is a vector of parameters, not estimates of the parameters.

$\tilde{\alpha} =$ Starting vector of parameters in $\overrightarrow{\theta_k}$ for EM algorithm under H_0 and H_1.

$E =$ Maximum number of steps for EM algorithm per random starting vector.

$S =$ Maximum number of random starting vectors.
\[\log \left(L_0^{r, \tilde{a}} \right) = \text{The log-likelihood under the null (} t = 0.5 \text{) of the } r^{th} \text{ iteration step of the EM algorithm when the random starting vector is } \tilde{a}. \]

\[r(\tilde{a}) = \min(r, E), \text{ where } E \text{ is defined above, and } r \text{ is defined as the minimum integer to satisfy:} \]
\[\left| \log \left(L_0^{r, \tilde{a}} \right) - \log \left(L_0^{r-1, \tilde{a}} \right) \right| < \varepsilon, \]

for a pre-specified tolerance \(\varepsilon \). Note that, for some circumstances, \(r \) may not exist. For these circumstances, we define \(r(\tilde{a}) = E \).

\[\log \left(L_0 \right) = \max_{\tilde{a}} \log \left(L_0^{r(\tilde{a}), \tilde{a}} \right), \text{ the maximum log-likelihood of the data under the null-hypothesis.} \]

\[\log \left(L_1 \right) = \text{The maximum log-likelihood of the data under the alternative hypothesis. It is computed in a similar fashion to } \log \left(L_0 \right) \text{ with the exception (as noted above: definition of } \tilde{a} \text{ above) that the random starting vectors } \tilde{a} \text{ use the } r(\tilde{a})^{th} \text{ step estimates of } \overrightarrow{\theta_2} \text{ from } \log \left(L_0 \right) \text{ as fixed coordinates.} \]

\[\tau_{k,j}^{(r)} = r^{th} \text{ iteration step estimate that the } j^{th} \text{ trio is in the } k^{th} \text{ population, } k = 1,2. \text{ Without loss of clarity, we will use sometimes write } \tau_{k,abc}^{(r)}, \text{ where } abc \text{ refers to the trio } x_{abc} \text{ (see above).} \]

Log-likelihood of true data

Using the work of Zhou and Pan \(^{11}\), we write the log-likelihood of the true data as:

\[\log(L_c) = \sum_{k=1}^{2} \sum_{j=1}^{n} z_{k,j} \left[\log(\pi_k) + \log \left(f(x_j; \overrightarrow{\theta_k}) \right) \right] + C \log(\pi_1), \tag{1} \]
where C is a penalty used to stabilize the parameter estimate π_1, and $z_{k,j}$ is the indicator variable for population k and trio x_j. That is, if trio x_j is in the k^{th} population, then $z_{k,j}$ is 1; otherwise it is 0. Note that, by this equation, there are n trios in our data set. Since we do not know the values of $z_{k,j}$, we use the method of Expectation-Maximization to estimate them, the mixing proportions π_k, and the coordinates of the vectors $\overrightarrow{\theta_k}$, $1 \leq k \leq 2$.

All trios drawn from a population with the same set of mating type frequencies

In this situation, as noted above, each mating type is equal for the linked sub-population and the unlinked population. It follows that $\mu_{1,i} = \mu_{2,i} = \mu_i$ for all i, and $\overrightarrow{\theta_1} = (t, \pi_1, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6)$ and $\overrightarrow{\theta_2} = (\frac{1}{2}, \pi_2, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6)$. To compute estimates for these parameters, we use the EM method.

Linked set of trios and unlinked set of trios drawn from populations in which the set of mating type frequencies differ by population

In this situation, each mating type is different for the linked and the unlinked sub-populations. It follows that $\mu_{1,i} \neq \mu_{2,i}$ for at least one i, and $\overrightarrow{\theta_1} = (t, \pi_1, \mu_{1,1}, \mu_{1,2}, \mu_{1,3}, \mu_{1,4}, \mu_{1,5}, \mu_{1,6})$ and $\overrightarrow{\theta_2} = (\frac{1}{2}, \pi_2, \mu_{2,1}, \mu_{2,2}, \mu_{2,3}, \mu_{2,4}, \mu_{2,5}, \mu_{2,6})$. Note that, from Table 1, we have $\sum_{i=1}^{6} \mu_{k,i} = 1$, $1 \leq k \leq 2$. As above, to compute estimates for these parameters, we use the EM method.

Log-likelihood of observed data

We can write the log-likelihood of the observed data under the alternative hypothesis as:

$$\log(L_1) = \sum_{j=1}^{n} \log(\Pr(x_j)) =$$
\[\sum_{j=1}^{n} \log(\Pr(x_j|x_j \text{ in linked sub-population}) \times \Pr(x_j \text{ in linked sub-population}) + \Pr(x_j|x_j \text{ in unlinked sub-population}) \times \Pr(x_j \text{ in unlinked sub-population})) = \sum_{j=1}^{n} \log \left(\hat{\pi}_1 f(x_j; \bar{\theta}_1) + \hat{\pi}_2 f(x_j; \bar{\theta}_2) \right). \]

The values \(f(x_j; \bar{\theta}_1) \) and \(f(x_j; \bar{\theta}_2) \) are provided in Table 1. Note that the null hypothesis can be written as either: \(\pi_1 = 0 \) or \(t = 0.5 \) in \(\bar{\theta}_1 \), in which case the log-likelihood becomes:

\[\log(L_0) = \sum_{j=1}^{n} \log \left(f(x_j; \bar{\theta}_2) \right). \]

This situation, in which two different equations lead to the null scenario, also occurs in linkage analysis with the heterogeneity LOD (HLOD or H-LOD) statistic \(^{13,14}\). Under such a mixture model, the asymptotic null can be difficult to determine. As documented by Huang and Vieland \(^{15}\), the asymptotic null distribution of the HLOD statistic depends on the assumed genetic model for the trait. To address this difficulty, we compute p-values by permutation. Zhou and Pan computed p-values for their statistic using permutation as well \(^{11}\).

P-values determined by permutation

We create each replicate of permuted data as follows: in a given trio, the affected child’s genotype is replaced by the genotype generated using a transmission probability of \(t = 0.5 \) for each heterozygous parent. That is, each heterozygous parent transmits the M allele with probability 50% and the N allele, also with probability 50%. For example, if a trio’s genotypes are: MN, NN, and MN for parent 1, parent 2, and affected child, respectively, then the possible permuted genotypes for the trio are: MN, NN, MN and MN, NN, NN, each occurring with 50%
probability. This permutation method is similar to that implemented in the PLINK software program.

TDT-HET statistic

The TDT-HET statistic is given by the formula:

\[TDT-HET = 2 \times \left[\log(L_1) - \log(L_0) \right]. \tag{2} \]

We define \(\log(L_0) \) and \(\log(L_1) \) as follows. Let \(\log(L_{0}^{r,a}) \) be the log-likelihood under the null \(t = 0.5 \) of the \(r \)-th-step of the EM algorithm when the random starting vector is \(\tilde{a} \). We define:

\[
\log(L_0) = \max_{\tilde{a}} \log \left(L_{0}^{r(\tilde{a}),\tilde{a}} \right),
\]

where (see below) \(r(\tilde{a}) = \min(r, E) \), and \(r \) is defined as the minimum integer to satisfy:

\[
\left| \log \left(L_{0}^{r,\tilde{a}} \right) - \log \left(L_{0}^{r-1,\tilde{a}} \right) \right| < \varepsilon,
\]

for a pre-specified tolerance \(\varepsilon \).

Throughout this work, the starting vector \(\tilde{a} \) under \(H_1 \) will use those values in \(\bar{\theta}_2 \) maximized under \(H_0 \). For example, when the linked and unlinked trios come from the same population, it follows that \(\mu_{1,i} = \mu_{2,i} = \mu_i \) for all \(i \), \(\bar{\theta}_1 = (t, \pi_1, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6) \), \(\bar{\theta}_2 = (\frac{1}{2}, \pi_2, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6) \), and the maximum likelihood estimates of \(\mu_i \) are determined by the counting method; that is, they remain constant throughout each step of the EM algorithm.

Hence, we can rewrite the parameter vectors as: \(\bar{\theta}_1 = (t, \pi_1) \) and \(\bar{\theta}_2 = (\pi_2) \). First, we find a maximum likelihood estimate for \(\pi_2 \) (denoted \(\hat{\pi}_2 \)) by applying the EM algorithm to the data under \(H_0 \), considering multiple starting values \(\tilde{a} \) for \(\pi_2 \). Next, we determine a maximum
likelihood estimate for t under H_1 by using multiple starting vectors $\tilde{a} = (t, \hat{\pi}_1)$, where $\hat{\pi}_1 = 1 - \hat{\pi}_2$. That is, each random starting vector \tilde{a} under H_1 consists of a random starting value t.

TDT-HET Statistic parameter estimates

Here, we present the r^{th} iteration step parameters in the vectors $\tilde{\theta}_k$ for the TDT-HET statistic under different scenarios (All trios drawn from common population, Linked set of trios and unlinked set of trios drawn from different populations).

All trios drawn from a population with one set of parental mating types

t Parameter

We can show that the r^{th} iteration step of the transmission probability parameter t is given by:

$$t^{(r)} = \frac{A^{(r)}}{A^{(r)}+B^{(r)}}, \quad (3)$$

where

$$A^{(r)} = n_{212} \tau_{1,212}^{(r)} + 2n_{112} \tau_{1,112}^{(r)} + n_{111} \tau_{1,111}^{(r)} + n_{101} \tau_{1,101}^{(r)},$$

and

$$B^{(r)} = n_{211} \tau_{1,211}^{(r)} + n_{111} \tau_{1,111}^{(r)} + 2n_{110} \tau_{1,110}^{(r)} + n_{100} \tau_{1,100}^{(r)}.$$

Note that, if π_2 equals 0, so that all the trios are linked ($t \neq \frac{1}{2}$), then $\tau_{1,abc}^{(r)}$ is 1 for all trios, and the formula (3) reduces to the quotient of the number of heterozygous parents that transmit the M allele divided by the number of heterozygous parents in the sample. Several authors $^{17-19}$ have shown that the quotient is the maximum likelihood estimate of t.

π_1 Parameter
Our solution for π_1 is given by:

$$\pi_1^{(r)} = \frac{\sum_{abc} n_{abc} \tau_{1,abc}^{(r)} + C}{n + C}, \quad (4)$$

where each of the parameters has been defined in the Methods section (Notation). We comment that equation (4) is virtually identical to the solution provided by Zhou and Pan 11, with the exception that the posterior probabilities $\tau_{1,abc}$ in this work differ from their probabilities.

μ_i Parameters

Our work in the Appendix indicates that the values of these parameters are given by:

$$
\begin{align*}
\mu_1 &= \frac{n_{222}}{n}, \\
\mu_2 &= \frac{n_{212} + n_{211}}{n}, \\
\mu_3 &= \frac{n_{201}}{n}, \\
\mu_4 &= \frac{n_{112} + n_{111} + n_{110}}{n}, \\
\mu_5 &= \frac{n_{101} + n_{100}}{n}, \\
\mu_6 &= \frac{n_{000}}{n}.
\end{align*}
$$

(5)

Another way of saying this is that each μ_i is the proportion of trios in the total sample that have mating type i (Table 1). Notice that each of these parameters remains constant over all iterations.

Linked set of trios and unlinked set of trios drawn from populations in which the mating type frequencies differ

In this situation, each mating type is different for the linked and the unlinked sub-populations. It follows that $\mu_{1,i} \neq \mu_{2,i}$ for at least one i, and $\ddot{\theta}_1 = (t, \pi_1, \mu_{1,1}, \mu_{1,2}, \mu_{1,3}, \mu_{1,4}, \mu_{1,5}, \mu_{1,6})$ and
\[\tilde{\theta}_2 = \left(\frac{1}{2}, \pi_2, \mu_{2,1}, \mu_{2,2}, \mu_{2,3}, \mu_{2,4}, \mu_{2,5}, \mu_{2,6} \right). \] Note that, from Table 1, we have \(\sum_{i=1}^{6} \mu_{k,i} = 1, 1 \leq k \leq 2. \)

\[\mu_{k,i} \text{ Parameters} \]

If we define:

\[
n_1^{(r)} = n_{222} \tau_{1,222}^{(r)} + n_{212} \tau_{1,212}^{(r)} + n_{211} \tau_{1,211}^{(r)} + n_{201} \tau_{1,201}^{(r)} + n_{112} \tau_{1,112}^{(r)} + n_{111} \tau_{1,111}^{(r)} + \\
n_{110} \tau_{1,110}^{(r)} + n_{101} \tau_{1,101}^{(r)} + n_{100} \tau_{1,100}^{(r)} + n_{000} \tau_{1,000}^{(r)}
\]

we can show (Appendix) that:

\[
\begin{align*}
\mu_{1,1} &= \frac{n_{222} \tau_{1,222}^{(r)}}{n_1^{(r)}}, \\
\mu_{1,2} &= \frac{n_{212} \tau_{1,212}^{(r)} + n_{211} \tau_{1,211}^{(r)}}{n_1^{(r)}}, \\
\mu_{1,3} &= \frac{n_{201} \tau_{1,201}^{(r)}}{n_1^{(r)}}, \\
\mu_{1,4} &= \frac{n_{112} \tau_{1,112}^{(r)} + n_{111} \tau_{1,111}^{(r)} + n_{110} \tau_{1,110}^{(r)}}{n_1^{(r)}}, \\
\mu_{1,5} &= \frac{n_{101} \tau_{1,101}^{(r)} + n_{100} \tau_{1,100}^{(r)}}{n_1^{(r)}}, \\
\mu_{1,6} &= \frac{n_{000} \tau_{1,000}^{(r)}}{n_1^{(r)}}.
\end{align*}
\]

For \(k = 2 \), one can show that the corresponding mating types are:
\[
\begin{align*}
\mu_{2,1} &= \frac{n_{222}\tau_{2,222}^{(r)}}{n_2}, \\
\mu_{2,2} &= \frac{n_{212}\tau_{2,212}^{(r)} + n_{211}\tau_{2,211}^{(r)}}{n_2}, \\
\mu_{2,3} &= \frac{n_{201}\tau_{2,201}^{(r)}}{n_2}, \\
\mu_{2,4} &= \frac{n_{112}\tau_{2,112}^{(r)} + n_{111}\tau_{2,111}^{(r)} + n_{110}\tau_{2,110}^{(r)}}{n_2}, (6b) \\
\mu_{2,5} &= \frac{n_{101}\tau_{2,101}^{(r)} + n_{100}\tau_{2,100}^{(r)}}{n_2}, \\
\mu_{2,6} &= \frac{n_{000}\tau_{2,000}^{(r)}}{n_2},
\end{align*}
\]

where

\[
\begin{align*}
n_2^{(r)} &= n_{222}\tau_{2,222}^{(r)} + n_{212}\tau_{2,212}^{(r)} + n_{211}\tau_{2,211}^{(r)} + n_{201}\tau_{2,201}^{(r)} + \\
&+ n_{112}\tau_{2,112}^{(r)} + n_{111}\tau_{2,111}^{(r)} + n_{110}\tau_{2,110}^{(r)} + n_{101}\tau_{2,101}^{(r)} + n_{100}\tau_{2,100}^{(r)} + n_{000}\tau_{2,000}^{(r)}
\end{align*}
\]

are analogous to \(n_1^{(r)}\) defined above.

We note that the EM estimate \(t^{(r)}\) will not change, nor will the estimates \(\pi_k^{(r)}\). Our reasoning is presented in the Appendix.

References

