Bron Kerbosch Algorithm (BK)

The BK algorithm [1] uses the recursive backtracking paradigm to enumerate all maximal cliques in the graph. At any given point in time it maintains three lists, C, I, and X. The set C contains the vertices of the clique currently being enumerated, the set I contains vertices that are connected to all vertices in C and can be added to C to make a larger clique and the set X contains vertices that are connected to all vertices in C but are excluded from being added to C because all cliques containing vertices in X have already been enumerated in a different recursion cycle. Algorithm 1 gives an overview of the algorithm.

Algorithm 1: Bron and Kerbosch Algorithm

1 Algorithm: BK Algorithm
 \[\text{Input: A unweighted undirected graph } G = (V, E)\]
 \[\text{Output: A list of all maximal cliques in } G\]
2 $C = \emptyset$; /* A set of vertices that represent a maximal clique or can be extended to a maximal clique */
3 $I = V(G)$; /* The set of vertices that are connected to all vertices in C and can be added to C to make a larger clique */
4 $X = \emptyset$; /* The set of vertices connected to all vertices in C but excluded from being added to $C */
5 BK - Enumerate(C, I, X)

Algorithm 2: The recursive function utilized in the BK algorithm

1 Algorithm: BK - Enumerate(C, I, X)
2 if $I = \emptyset$ and $X = \emptyset$ then
3 print C as maximal clique;
4 else
5 v = vertex connected to maximum number of vertices in I;
6 while $v \neq \emptyset$ do
7 BK - Enumerate($C \cup \{v\}, I \cap N(v), X \cap N(v)$);
8 /* $N(v)$ represents the neighbors of vertex v in G */
9 $I = P - \{v\}$;
10 $X = N \cup \{v\}$;
11 v = vertex connected to maximum number of vertices in I

The current recursion stops when C cannot be expanded any further, i.e., I becomes \emptyset. At this point, if set X is also \emptyset then the vertices C form a maximal clique and added to the output set. The condition $X = \emptyset$ checks for maximality.
because if \(X \) were not empty then it would mean the \(C \) can be further expanded with the vertices from \(X \) to form an even larger clique and hence \(C \) cannot be maximal.

References