A Brief Overview of TMLE

Suppose \mathcal{M} is a model, p_0 is a density function in \mathcal{M}, and $\Psi(p_0)$ is a function that maps p_0 into a vector valued parameter. For a pathwise differentiable parameter $\varphi_0 = \Psi(p_0)$, its pathwise derivative at p_0 can be written as the covariance of the efficient influence curve D^* and the score of the path S:

$$\frac{d}{d\varepsilon} \Psi(p_0(\varepsilon)) |_{\varepsilon=0} = E[D^* S].$$

Suppose there exists an initial density estimator $p_n(0)$ based on the empirical probability distribution P_n with the efficient IC $D^*(p_n(0))$. We can find a parametric fluctuation $p_n(0)(\varepsilon)$ indexed by ε through the initial estimator $p_n(0)$, whose score at $\varepsilon = 0$ is equal to the efficient IC, mathematically expressed as:

$$p_n(0)(\varepsilon = 0) = p_n(0) \quad \text{and} \quad \frac{d\log(p_n(0)(\varepsilon))}{d\varepsilon} |_{\varepsilon=0} = D^*(p_n(0)).$$

This fluctuation function plays the role of stretching the initial density estimator $p_n(0)$ in a direction that targets the parameter of interest. A “good” fluctuation can be found by maximizing the log-likelihood of $p_n(0)(\varepsilon)$ with respect to ε:

$$\varepsilon_m^{(1)} = \arg\max_{\varepsilon} \sum_i \log(p_n(0)(\varepsilon))(O_i).$$

The 1st step TMLE density estimator $p_n^{(1)}$ for p_0 can then be defined as:

$$p_n^{(1)} = p_n(0)(\varepsilon_m^{(1)}),$$

and the 1st step TMLE estimator $\tilde{\varphi}_n^{(1)}$ for φ_0 is:

$$\tilde{\varphi}_n^{(1)} = \Psi(p_n^{(1)}).$$

This process may need to be iterated to reach convergence.

The observed data is $O = (Y,A,W)$, and the proposed semiparametric model is $E[Y|A,M^-] = \beta A + f(W)$. Let $p(Y|A,W)$ and $p(A|W)$ denote the conditional densities and $p(W)$ the marginal density. The observed data can be factorized into three orthogonal parts:

The parameter β is only a function of $p(Y|A,W)$. Therefore the efficient IC of β represents only a score for $p(Y|A,W)$, and the targeted fluctuation function can be
selected to only fluctuate the conditional density $p(Y|A,W)$. The efficient IC of β is given below:

$$D^*(p) = \frac{1}{E[A(E[A|M^-])]}(A - E[A|M^-])(Y - \beta A - E[Y|A = 0, M^-]).$$

Consider the following parametric fluctuation:

$$p(\varepsilon) \propto d_0(Y - \beta_\varepsilon A - \theta_\varepsilon),$$

where d_0 is the standard normal density, $\beta_\varepsilon = \beta + \varepsilon$, and $\theta_\varepsilon = E[Y|A = 0, W] - \varepsilon E[A|W]$. It follows that, as required, the score of this fluctuation at $\varepsilon = 0$ spans the efficient IC. The maximum likelihood estimator of ε for this fluctuation function can be obtained through a simple linear regression, in which the residuals from $E[Y|A, W]$ are regressed on the residuals from $E(A|W)$. With this parameterization, TMLE convergence is achieved in one step. When n goes to infinity, we have the asymptotic result:

$$\sqrt{n}(\beta_n - \beta_0) \sim N(0, \sigma^2_n),$$

where $\sigma^2_n = \frac{1}{n} \sum_{i=1}^{n} I\hat{C}(O_i)^2$ is the estimate of the asymptotic variance of β_n. The $I\hat{C}(O_i)$ is the estimate of the efficient IC and can be obtained by plugging estimates of $E[Y|A, W]$ and $E(A|W)$ in formula 3. One can then carry out a statistical test on β.

A Demo Simulation of TMLE

We simulated 1000 outcomes Y from the following model:

$$Y = 0.5A + 2W_1W_2 + 3W_2W_3^2 - W_1W_3 + e,$$

where $e \sim N(0, 10)$. The W_1, W_2, and W_3 were sampled jointly from a multivariate normal distribution. Each W is centered at 0.5 with variance 1. The correlation coefficients are 0.76 between W_1 and W_2, 0.66 between W_2 and W_3, and 0.69 between W_3 and W_1. The variable A was the product of three Ws:

$$A = W_1W_2W_3 + e_A,$$

where e_A is the standard normal error. We are interested in the effect of A on Y, i.e. the β in the semiparametric model $Y = \beta A + f(W)$. To carry out the TMLE, we used a linear regression of Y on A and all three Ws as the initial estimator $Q_n^{(0)}$, i.e.

$$Y \sim A + W_1 + W_2 + W_3.$$
Table 1: the mean estimate of β and its standard error.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_n^{(0)}$</td>
<td>3.2041</td>
<td>0.2236</td>
</tr>
<tr>
<td>TMLE($g_n(W)=$POLYMARS)</td>
<td>0.7233</td>
<td>0.3889</td>
</tr>
<tr>
<td>TMLE($g_n(W)=$correct model)</td>
<td>0.5187</td>
<td>0.3573</td>
</tr>
</tbody>
</table>

We used the POLYMARS (the multivariate adaptive polynomial spline regression) in R to model the $g_n(W)$. We also used the correct model for the $g_n(W)$, i.e. $A \sim I(W_1W_2W_3)$. This simulation was repeated for 100 times. The mean estimate of β and its standard error were reported in Table 1. The true value of β is 0.5, and we can see the initial estimate of β from a mis-specified $Q_n^{(0)}$ is highly biased. TMLE was able to correct the bias by modeling $g_n(W)$ at a price of a small increase in the standard error of the estimator. How much the TMLE can correct depends on how good the $g_n(W)$ is, and the correctly modeled $g_n(W)$ has achieved a full bias reduction.

The TMLE-VIM(λ) Procedure

Suppose we have a sequence of correlation cutoffs δ_k, $k = 1, \ldots, K$. For a variable A, one computes its correlation coefficients with all the remaining variables W. Applying δ_k on these correlations identifies a sequence of adjustment sets W_{δ_k}, whose variables are correlated with A at a level less than δ_k. These adjustment sets correspond to a sequence of gene confounding mechanisms $g_n(W_{\delta_k})$, which when applied in TMLE-VIM produces a sequences of TMLE-VIM p-values $p(W_{\delta_k})$. Let λ be a pre-fixed number, the TMLE-VIM(λ) chooses the W_{δ_k} associated with the largest TMLE-VIM p-value $p(W_{\delta_k})$ that are less than λ among all W_{δ_k} as the adjustment set in its gene confounding mechanism. Let $p(\lambda)$ denote the TMLE-VIM(λ) p-value, mathematically, it can be written as:

$$ p(\lambda) = p(\delta_h), \text{ where } \delta_h = \arg\max_{\delta_k} (p(W_{\delta_k}) < \lambda), \ k = 1, \ldots, K. $$

Below we illustrate the TMLE-VIM(λ) with a simple example. Suppose that we have three variables V_1, V_2, and V_3, with a correlation matrix:

<table>
<thead>
<tr>
<th></th>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>1.0</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>V_2</td>
<td>0.3</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>V_3</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
</tr>
</tbody>
</table>
For each of these three variables, we compute the TMLE-VIM p-values at four correlation coefficient cutoffs $\delta = (0.1, 0.4, 0.6, 0.9)$. We denote these TMLE p-values as p_{kj}, where k indexes δ_k and j indexes V_j. For variable V_1, suppose both p_{11} and p_{21} are less than λ, and among them, the maximum δ value is $\delta_2 = 0.4$, and therefore $p_1(\lambda) = p_1(\delta_2 = 0.4) = p_{21}$ with adjustment set $W = (V_2)$. Similarly, for V_2, $p_2(\lambda) = p_2(\delta_4 = 0.9) = p_{42}$ with adjustment set $W = (V_1, V_3)$; for V_3, $p_3(\lambda) = p_3(\delta_4 = 0.6) = p_{33}$ with adjustment set $W = (V_1, V_2)$. Figure AF1 shows how the adjustment set is defined for each variable at every δ value and how the TMLE-VIM(λ) p-values are returned. To choose λ data adaptively, we can repeat the whole procedure at different λ values, and select the λ associated with the lowest cross validated risk. p_{kj} is the TMLE p-value for j-th variable V_j and k-th correlation cut-off δ_k; W is the adjustment set from corresponding δ_k; Φ represents empty set.
Simulation II Data Generation

Each dataset in simulation II contains 1000 variables. What follows is a step-by-step explanation of how we generated our data. Each observation \((Y_i, A_i, W_i)\) is indexed by \(i, i = 1, \cdots, n\).

1. For \(W\), jointly draw an \(n \times 800\) matrix from a multivariate normal distribution with mean 0 (0.3 for polynomial model to create correlation between \(W\) and \(W^2\)) and covariance matrix \(S\). The \(S\) was the correlation matrix computed from the top 800 ranked genes from ?1. The absolute median of \(S\) is around 0.26. For the rest 200 variables, each denoted by \(A_k\), do the following:

2. For the \(k\)-th \(A\), randomly sample 30 variables from \(W\), and the \(k\)-th \(A\) is the sum of these 30 \(W\)s added with a normal error \(e, e \sim N(0, 5)\). This results in a median absolute correlation coefficient of 0.3 among \(A\)s.

3. Standardize \(A_k\) (\(A_k^2\) for the polynomial model) by its mean and standard error and so every \(A\) (\(A^2\)) has mean 0 and standard error 1.

4. Compute the outcome \(Y\) using 20 randomly sampled \(A\)s. For the linear model:

\[
Y = \sum_{k=1}^{20} \beta_k A_k + e,
\]

where \(\beta\) is \((2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2)\) and \(e \sim N(0, 5)\). For the polynomial model:

\[
Y = 2 \sum_{k=1}^{20} \beta_k A_k^2 + e
\]

5. Standardize all variables including all \(A\)s and \(W\)s by their means and standard errors.