Algorithm EBD

Input: Dataset D and parameter λ.

Output: An optimal Bayesian discretization of variable X relative to D.

Definitions of terms:

Let D be a dataset of n instances consisting of the list $((X_1, Z_1), (X_2, Z_2), \ldots, (X_k, Z_k), \ldots, (X_n, Z_n))$ that is sorted in ascending order of X_k, where X_k is a real value of the predictor variable and Z_k is the associated integer value of the target variable.

Let $S_{a,b}$ be a list of the first elements in D, starting at the a^{th} pair in D and ending at the b^{th} pair.

Let T_b be a set that represents a discretization of $S_{1,b}$.

Let target variable Z have J unique values, and let Z_j denote the j^{th} unique value. Let U be a real array of J elements, and let U_j denote its j^{th} element. U will contain the distribution of values of the target variable for some $S_{a,b}$.

Let n' be the number of unique values of predictor variable X, and let X_k denote the k^{th} unique value.

Let V be a real array of n' elements, and let V_y denote its y^{th} element.

For $1 \leq k \leq n'$, let $W_k = (count_{k,1}, count_{k,2}, \ldots, count_{k,J})$ be an array such that for $1 \leq j \leq J$, the term $count_{k,j}$ is equal to the number of pairs in D in which the first element has value X_k and the second element (i.e., the target value) has value Z_j.

Let $MarginalLikelihood(U)$ be the following marginal likelihood function, which follows from Equation 7 when array U is used to derive the n_i and n_{ij} counts:

$$MarginalLikelihood(U) := \frac{(J-1)!}{(J-1 + \sum_{j=1}^{J} U_j)!} \prod_{j=1}^{J} U_j!$$

Let $Prior(k)$ be the prior function defined in Equation 10 in the text.

Lines of Code:

1. $V_0 := 1$;
2. $T_0 := \{}$;
3. for $a := 1$ to n'
 4. $P := Prior(a)$;
 5. $V_a := 0$;
 6. $U := (0, 0, \ldots, 0)$;
 7. for $b := a$ downto 1
 8. $U := U + W_b; /* element-wise addition */$
 9. $ML := MarginalLikelihood(U);$
10. $Score_{ba} := P \times ML$;
11. if $V_{b-1} \times Score_{ba} > V_a$
12. then
13. $T_a := T_{b-1} \cup \{ S_{b,a} \}$;
14. $V_a := V_{b-1} \times Score_{ba}$;
15. $P := P \times (1 - Prior(b-1))$;
16. return $T_{n'}$.