Additional File 3 — A sketch of a proof for the formula of limiting UA on Hennigian comb-shaped trees

For a Hennigan comb shaped tree, let Z be an internal node, under which the number of leaves is large. Let X and Y be the left and right children of Z, thus X is a leaf and Y is a root of a smaller comb-shaped tree. Suppose that the branch length of ZX tends towards infinity, then by the Jukes-Cantor model the true state at X is randomized, that is, $\Pr_X[X = i] = \frac{1}{N}$ for $i \in S$, where t_X denotes the true state at X.

Let i be the cardinality of the set of states that the Fitch algorithm reconstructs at Y. Then the reconstructed set at Z contains either $i + 1$ or 1 state(s), with probability $\frac{N-i}{N}$ and $\frac{1}{N}$, respectively. As a result, the cardinalities of the reconstructed state set by the Fitch algorithm from leaves to the root can be formulated by a Markov process, in which the state set is $\{1, 2, \ldots, N\}$ and the transition matrix is

$$T = \begin{bmatrix}
\frac{1}{N} & \frac{N-1}{N} & 0 & \cdots & 0 \\
\frac{1}{N} & \frac{N-2}{N} & \frac{N-1}{N} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{N} & 0 & 0 & \cdots & \frac{1}{N} \\
1 & 0 & 0 & 0 & 0
\end{bmatrix} \tag{1}$$

For every pair of states i and j, there is a walk $i, 1, 1, \ldots, 1, 2, 3, \ldots, j - 1, j$ from i to j of length N with non-zero probability. Thus, the transition matrix T is primitive. By the Perron-Frobenius theorem [1], there exists an equilibrium state vector $\vec{v} = (v_1, v_2, \ldots, v_N)$, such that $\vec{v} = \vec{v}T$. Since the state at X is randomized, the probability that the reconstructed cardinality 1 set contains the true state is $\frac{1}{N}$. Thus, the limiting UA is $\frac{1}{N} v_1$, which is $\sum_{i=1}^{N} \frac{N-i}{N} \frac{N-i-1}{(N-1)!}$.

References