INPUT: training data (set of RNA sequences) test data (set of RNA sequences)

OUTPUT: SVM class probability for each of test data

(1) Training

for each sequence x in training data
 compute a base-pairing probability matrix P_x;
 for each position i in x
 compute a base-pairing profile {$P_{xL}(i)$, $P_{xR}(i)$, $P_{xU}(i)$};
 end for
end for

for each sequence x in training data
 for each sequence y in training data
 compute a value of BPLA kernel $K_{train}(x, y)$;
 end for
end for

Train a SVM classifier using K_{train};

(2) Test

for each sequence x in test data
 compute a base-pairing probability matrix P_x;
 for each position i in x
 compute a base-pairing profile {$P_{xL}(i)$, $P_{xR}(i)$, $P_{xU}(i)$};
 end for
end for

for each sequence x in test data
 for each sequence y in training data
 compute a value of BPLA kernel $K_{test}(x, y)$;
 end for
end for

for each sequence x in test data
 compute a SVM class probability for x using K_{test} and the trained classifier;
end for

function COMPUTE_AVERAGED_BP_MATRIX(X)
 for each sequence X_k in X
 compute a base-pairing probability matrix P_{X_k};
 end for
 return the averaged matrix of P_{X_k};
end function

(b) Profile BPLA kernel

INPUT: training data (set of RNA alignments) test data (set of RNA alignments)

OUTPUT: SVM class probability for each of test data

(1) Training

for each alignment X in training data
 P_X = COMPUTE_AVERAGED_BP_MATRIX(X);
 for each column i in X
 compute a base-pairing profile {$P_{X_L}(i)$, $P_{X_R}(i)$, $P_{X_U}(i)$};
 end for
end for

for each alignment X in training data
 for each alignment Y in training data
 compute a value of Profile BPLA kernel $K_{train}^{pair}(X, Y)$;
 end for
end for

Train a SVM classifier using K_{train}^{pair};

(2) Test

for each alignment X in test data
 P_X = COMPUTE_AVERAGED_BP_MATRIX(X);
 for each column i in X
 compute a base-pairing profile {$P_{X_L}(i)$, $P_{X_R}(i)$, $P_{X_U}(i)$};
 end for
end for

for each alignment X in test data
 for each alignment Y in training data
 compute a value of Profile BPLA kernel $K_{test}^{pair}(X, Y)$;
 end for
end for

for each alignment X in test data
 compute a SVM class probability for X using K_{test}^{pair} and the trained classifier;
end for

function COMPUTE_AVERAGED_BP_MATRIX(X)
 for each sequence X_k in X
 compute a base-pairing probability matrix P_{X_k}';
 end for
 return the averaged matrix of P_{X_k}';
end function