The pseudocode of procedure Heu-Label

Input: A weighted similarity graph G_H.

Output: A labeling l of G_H.

Step 1: for each vertex i of G_H do { $l(i) = \sim$; }

Step 2: for each homozygous constraint edge c_{ij} of G_H do

$\alpha =$ an HLA gene type in the constraint of c_{ij}; $l(i) = l(j) = \alpha$; delete c_{ij} from G_H;

Step 3: build a graph G by deleting all constraint edges and the similarity edges whose weights are small than T_s from G_H;

Step 4: find all connected components of G by depth first search;

Step 5: for each connected component $comp$ (from the largest to the smallest) do

Step 5.1: for each HLA gene type α in $C(G_H)$ do { $N(\alpha) = 0$; }

Step 5.2: for each vertex i in $comp$ do

if $l(i) \neq \sim$ then $N(l(i)) ++$;
else

$\{ (\alpha, \beta) =$ the constraint of the constraint edge adjacent to i in $G_H; N(\alpha)+++; N(\beta)+++; \}$

Step 5.3: $\gamma = \text{argmax}(N(\alpha))$;

Step 5.4: for each vertex i in $comp$ do

$(\alpha, \beta) =$ the constraint of the constraint edge c_{ij} adjacent to i in G_H;

if $l(i) = \sim$ then

if $\alpha = \gamma$ then $l(i) = \alpha; l(j) = \beta$; delete the constraint edge c_{ij} from G_H;
delete vertices i and j from G;
if $\beta = \gamma$ then $l(i) = \beta; l(j) = \alpha$; delete the constraint edge c_{ij} from G_H;
delete vertices i and j from G;

Step 6: repeat Steps 4 and 5 until there are no more vertices can be labeled.