Calculation of p-values for sub-HMM/PROSITE overlaps

Let q_{ij} be the probability that a query fragment of length F_j overlaps a PROSITE fragment of length P_j on a protein of length S_j in PFAM family i by a fraction of at least x:

$$q_{ij} \leq \min \left(1, \frac{P_j + F_j - 2x \min (P_j, F_j) + 1}{S_j - F_j + 1}\right) \tag{1}$$

Then we want to compute the probability, D_i, that a certain number of overlaps occurs between a PFAM family i and a PROSITE family. In particular, given that at least 50% of the members of either family lie in the intersection, we want the probability that 95% of the sequences in the intersection have an overlapping fragment.

Let F be a PFAM family and P be a PROSITE family. We define R as the set of all subsets of $F \cap P$ which contain at least 95% of the intersection:

$$R = \{ R | R \subseteq F \cap P \land |R| \geq 0.95n \} \tag{2}$$

where $n = |F \cap P|$. Let $p_{ij} = \{ q_{ij} | j \in F \cap P \}$, then

$$D_i = \sum_{R \in R} \left(\prod_{j \in R} p_{ij} \prod_{j \in (F \cap P) \setminus R} (1 - p_{ij}) \right) \tag{3}$$

Since this would require enumerating every set in R, this would take too long to calculate, so we approximate it with an upper bound. Let $j^* = \arg\max_j p_{ij}$ and $R^* = \arg\min_{R' \in R} (|R'|) \forall R' \in R$. Then we have

$$D_i \leq \sum_{R \in R} \prod_{j \in R} p_{ij} \tag{4}$$

$$\leq \sum_{R \in R} |R|^{p_{ij}} \tag{5}$$

$$\leq |R|^{p_{ij}^{R^*}} \tag{6}$$

$$= \left(\sum_{k = [0.95n]}^{n} \binom{n}{k} \right) p_{ij}^{\lfloor 0.95n\rfloor} \tag{7}$$

This bound is often too loose in practice however. This is because for large values of p_{ij}^*, the last term in equation 3 makes that term very small, whereas the corresponding term in our bound would still be large. Therefore, we adopt a method of removing these large outliers to get a tighter bound.

$$D_i = \sum_{R \in R} \left(\prod_{j \in R} p_{ij} \prod_{j \in (F \cap P) \setminus R} (1 - p_{ij}) \right) \tag{8}$$

$$= \sum_{R \in R} \left(\prod_{j \in R} p_{ij} \prod_{j \in (F \cap P) \setminus R} (1 - p_{ij}) \right) \forall n' \in [1, n] \tag{9}$$

$$= \min_{n' \in [1, n]} \sum_{R \in R} \left(\prod_{j \in R} p_{ij} \prod_{j \in (F \cap P) \setminus R} (1 - p_{ij}) \right) \tag{10}$$

To simplify the notation, we re-write this in terms of the following sets:
\[U = F \cap P \]
\[U_- = \{ x \in U : p_{ix} \leq p_{in'} \} \]
\[U_+ = U \setminus U_- \]
\[R_- = \{ S : S \subset U_- \wedge |S| \geq n' - 0.05n \} \]
\[R_+ = 2^{U_+} \]

These essentially divide \(U \) and \(R \) into their corresponding sets for elements less than \(p_{in'} \) and elements greater than \(p_{in'} \). Now we can rewrite Equation (10) as:

\[
\min_{n' \in [1,n]} \sum_{S \in R_-} \sum_{S^+ \in R_+} \left(\prod_{j \in S^-} p_{ij} \prod_{j \in S^+} 1 - p_{ij} \prod_{j \in U_- \setminus S^-} 1 - p_{ij} \right) \leq \min_{n' \in [1,n]} \sum_{S \in R_-} \prod_{j \in S^-} p_{ij}
\]

\[\leq \min_{n' \in [1,n]} \sum_{S \in R_-} (p_{in'})^{|S^-|} \]
\[\leq \min_{n' \in [1,n]} \sum_{k=n' - 0.05n}^{n'} \binom{n'}{k} p_{in'}^k \]

In equation (21), we replace the sum in the previous equation with a sum over the possible sizes of \(R \). For each size, the binomial term gives the number of sets of size \(k \), and the last term gives the probability of a set of size \(k \).