$\delta = D_0^* - \rho N^2$

$x \sim B(1/2)$

e^β

$p_c = 0$

$\delta = D_0^* - \rho N^2$

$x \sim U[0, \sqrt{3}]$

e^β

$p_c = 0$

$\delta = D_0^* - \rho N^2$

$\delta = D_0^* - \rho N^2$

$p_c = 0.25$

$\delta = D_0^* - \rho N^2$

$p_c = 0.25$

$\delta = D_0^* - \rho N^2$

$p_c = 0.5$

$\delta = D_0^* - \rho N^2$

$p_c = 0.5$

$\delta = D_0^* - \rho N^2$